

VIPA System SLIO

IM | 053-1EC01 | Handbuch

HB300 | IM | 053-1EC01 | de | 18-09 Interface-Modul EtherCAT - IM 053EC

www.vipa.com/de/service-support/handbuch

VIPA GmbH Ohmstr. 4 91074 Herzogenaurach Telefon: +49 9132 744-0 Telefax: +49 9132 744-1864 E-Mail: info@vipa.com Internet: www.vipa.com

			1 A .					-			
	h		Itc		-	1	\mathbf{n}		h	0	
	 			v	e		е.	н.			
-	 	~			$\mathbf{\nabla}$	_	U				

1	Allgemeines	5
	1.1 Copyright © VIPA GmbH	. 5
	1.2 Über dieses Handbuch	. 6
	1.3 Sicherheitshinweise	. 7
2	Grundlagen und Montage	. 8
	21 Sicherheitshinweis für den Benutzer	8
	2.2 Systemyorstellung	. 9
	2.2.1 Übersicht	9
	2.2.2 Komponenten	10
	2.2.3 Zubehör	12
	2.3 Abmessungen.	13
	2.4 Montage Bus-Koppler	15
	2.5 Verdrahtung	18
	2.5.1 Verdrahtung Bus-Koppler	18
	2.5.2 Verdrahtung Peripherie-Module	21
	2.5.3 Verdrahtung Power-Module	23
	2.6 Demontage	27
	2.6.1 Demontage Bus-Koppler	27
	2.6.2 Demontage Peripherie-Module	29
	2.7 Hilfe zur Fehlersuche - LEDs	32
	2.8 Aufbaurichtlinien	33
	2.9 Allgemeine Daten	35
3	Hardwarebeschreibung	37
	3.1 Leistungsmerkmale	37
	3.2 Aufbau	38
	3.2.1 Schnittstellen	38
	3.2.2 Adress-Schalter	40
	3.2.3 LEDs	40
	3.3 Technische Daten	42
4	Einsatz	44
	4.1 Grundlagen EtherCAT	44
	4.1.1 Allgemeines	44
	4.1.2 EtherCAT Zustandsmaschine	46
	4.1.3 CoE - CANopen over Ethernet	47
	4.1.4 ESI-Dateien	47
	4.2 Einstellung der HotConnect-Adresse	48
	4.2.1 HotConnet über Explicit Device ID	48
	4.2.2 HotConnet über Configured Station Alias	49
	4.3 Synchronisationsarten	50
	4.4 Zugriff auf das System SLIO	51
	4.4.1 Allgemein	51
	4.4.2 Zugriff auf den E/A-Bereich im Master-System	52
	4.4.3 Zugriff auf den E/A-Bereich	52
	4.4.4 Zugriff auf Parameterdaten	55
	4.4.5 Zugriff auf Slave Information	56
	4.4.6 Zugriff auf Diagnosedaten	57
	4.5 Datentransfer über PDO und SDO	60

4.6 Variables PDO-Mapping über SDO	60
4.7 Objektverzeichnis	61
4.8 Fehlerbearbeitung	81
4.8.1 Übersicht	81
4.8.2 Emergency-Fehlermeldung	81
4.8.3 Standard-Fehlermeldungen	82
4.8.4 SDO Fehlercode	84
4.9 Firmwareupdate	85
Anhang	86
A Änderungshistorie	88
 4.8.2 Emergency-Fehlermeldung	81 82 84 85 86 88

1 Allgemeines

1.1 Copyright © VIPA GmbH

All Rights Reserved	All	Rights	Reserved
---------------------	-----	--------	----------

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 9132 744 -0

Fax.: +49 9132 744-1864

EMail: info@vipa.de

http://www.vipa.com

	 Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.
	Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.
EG-Konformitätserklärung	Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Überein-
	stimmung ist durch CE-Zeichen gekennzeichnet.
Informationen zur Konfor- mitätserklärung	Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.
Warenzeichen	VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.
	SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.
	SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind eingetragene Warenzei- chen der Siemens AG.
	Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.
	Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.
	Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Dokument-Support	Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:
	VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany
	Telefax: +49 9132 744-1204
	EMail: documentation@vipa.de
Technischer Support	Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:
	VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany
	Telefon: +49 9132 744-1150 (Hotline)
	EMail: support@vipa.de

1.2 Über dieses Handbuch

Zielsetzung und InhaltDas Handbuch beschreibt die IM 053-1EC01 aus dem System SLIO von VIPA.
Beschrieben wird Aufbau, Projektierung und Anwendung.

Produkt	BestNr.		ab Stand:				
			нพ	FW			
IM 053EC	053	-1EC01	01	V1.0.3			
Zielgruppe	Das Har rungsted	ndbuch ist geschrieben f chnik.	für Anwender mit Grundkenr	ntnissen in der Automatisie-			
Aufbau des Handbuchs	Das Har Themati	ndbuch ist in Kapitel geg k.	liedert. Jedes Kapitel besch	reibt eine abgeschlossene			
Orientierung im Dokument	Als Orientierungshilfe stehen im Handbuch zur Verfügung:						
	 Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Verweise mit Seitenangabe 						
Verfügbarkeit	Das Har	ndbuch ist verfügbar in:					
	gedrin el	ruckter Form auf Papier ektronischer Form als P	DF-Datei (Adobe Acrobat Re	eader)			
Piktogramme Signalwörter	Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausge- zeichnet:						
		GEFAHR! Unmittelbar drohende möglich.	e oder mögliche Gefahr. Per	sonenschäden sind			

Sicherheitshinweise

Bei Nichtbefolgen sind Sachschäden möglich.

Zusätzliche Informationen und nützliche Tipps.

1.3 Sicherheitshinweise

Bestimmungsgemäße Verwendung

- Das System ist konstruiert und gefertigt für:
- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

Handbuch zugänglich machen für alle Mitarbeiter in

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzma
 ßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweis für den Benutzer

2 Grundlagen und Montage

2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Verwenden Sie für den Versand immer die Originalverpackung.

Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

2.2 Systemvorstellung

2.2.1 Übersicht

Das System SLIO ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Tragschiene. Mittels der Peripherie-Module in 2-, 4- und 8-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren. Der Verdrahtungsaufwand ist gering gehalten, da die DC 24V Leistungsversorgung im Rückwandbus integriert ist und defekte Elektronik-Module bei stehender Verdrahtung getauscht werden können. Durch Einsatz der farblich abgesetzten Power-Module können Sie innerhalb des Systems weitere Potenzialbereiche für die DC 24V Leistungsversorgung definieren, bzw. die Elektronikversorgung um 2A erweitern.

Systemvorstellung > Komponenten

2.2.2 Komponenten

- CPU (Kopf-Modul)
- Bus-Koppler (Kopf-Modul)
- Zeilenanschaltung
- Peripherie-Module
- Zubehör

VORSICHT!

Beim Einsatz dürfen nur Module von VIPA kombiniert werden. Ein Mischbetrieb mit Modulen von Fremdherstellern ist nicht zulässig!

CPU 01xC

Bei der CPU 01xC sind CPU-Elektronik, Ein-/Ausgabe-Komponenten und Spannungsversorgung in ein Gehäuse integriert. Zusätzlich können am Rückwandbus bis zu 64 Peripherie-Module aus dem System SLIO angebunden werden. Als Kopf-Modul werden über die integrierte Spannungsversorgung sowohl die CPU-Elektronik, die Ein-/Ausgabe-Komponenten als auch die Elektronik der über den Rückwandbus angebunden Peripherie-Module versorgt. Zum Anschluss der Spannungsversorgung, der Ein-/Ausgabe-Komponenten und zur DC 24V Leistungsversorgung der über Rückwandbus angebunden Peripherie-Module besitzt die CPU abnehmbare Steckverbinder. Durch Montage von bis zu 64 Peripherie-Modulen am Rückwandbus der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

CPU 01x

Bei der CPU 01x sind CPU-Elektronik und Power-Modul in ein Gehäuse integriert. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl die CPU-Elektronik als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen an der CPU werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

VORSICHT!

CPU-Teil und Power-Modul der CPU dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Bus-Koppler

Beim Bus-Koppler sind Bus-Interface und Power-Modul in ein Gehäuse integriert. Das Bus-Interface bietet Anschluss an ein übergeordnetes Bus-System. Als Kopf-Modul werden über das integrierte Power-Modul zur Spannungsversorgung sowohl das Bus-Interface als auch die Elektronik der angebunden Peripherie-Module versorgt. Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul. Durch Montage von bis zu 64 Peripherie-Modulen am Bus-Koppler werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen.

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

Zeilenanschaltung

Im System SLIO haben Sie die Möglichkeit bis zu 64 Module in einer Zeile zu stecken. Mit dem Einsatz der Zeilenanschaltung können Sie diese Zeile in mehrere Zeilen aufteilen. Hierbei ist am jeweiligen Zeilenende ein Zeilenanschaltung-Master-Modul zu setzen und die nachfolgende Zeile muss mit einem Zeilenanschaltung-Slave-Modul beginnen. Master und Slave sind über ein spezielles Verbindungskabel miteinander zu verbinden. Auf diese Weise können Sie eine Zeile auf bis zu 5 Zeilen aufteilen. Je Zeilenanschaltung vermindert sich die maximal Anzahl steckbarer Module am System SLIO Bus um 1. Für die Verwendung der Zeilenanschaltung ist keine gesonderte Projektierung erforderlich.

Peripherie-Module

Jedes Peripherie-Modul besteht aus einem Terminal- und einem Elektronik-Modul.

- 1 Terminal-Modul
- 2 Elektronik-Modul

Systemvorstellung > Zubehör

Terminal-Modul

Das *Terminal-Modul* bietet die Aufnahme für das Elektronik-Modul, beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik, die Anbindung an die DC 24V Leistungsversorgung und den treppenförmigen Klemmblock für die Verdrahtung. Zusätzlich besitzt das Terminal-Modul ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr SLIO-System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

Elektronik-Modul

Über das *Elektronik-Modul*, welches durch einen sicheren Schiebemechanismus mit dem Terminal-Modul verbunden ist, wird die Funktionalität eines SLIO-Peripherie-Moduls definiert. Im Fehlerfall können Sie das defekte Elektronik-Modul gegen ein funktionsfähiges Modul tauschen. Hierbei bleibt die Verdrahtung bestehen. Auf der Frontseite befinden sich LEDs zur Statusanzeige. Für die einfache Verdrahtung finden Sie bei jedem Elektronik-Modul auf der Front und an der Seite entsprechende Anschlussbilder.

2.2.3 Zubehör Schirmschienen-Träger

Der Schirmschienen-Träger (Best.-Nr.: 000-0AB00) dient zur Aufnahme von Schirmschienen (10mm x 3mm) für den Anschluss von Kabelschirmen. Schirmschienen-Träger, Schirmschiene und Kabelschirmbefestigungen sind nicht im Lieferumfang enthalten, sondern ausschließlich als Zubehör erhältlich. Der Schirmschienen-Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt. Bei flacher Tragschiene können Sie zur Adaption die Abstandshalter am Schirmschienen-Träger abbrechen.

Bus-Blende

Bei jedem Kopf-Modul gehört zum Schutz der Bus-Kontakte eine Bus-Blende zum Lieferumfang. Vor der Montage von System SLIO-Modulen ist die Bus-Blende am Kopf-Modul zu entfernen. Zum Schutz der Bus-Kontakte müssen Sie die Bus-Blende immer am äußersten Modul montieren. Die Bus-Blende hat die Best.-Nr. 000-0AA00.

Kodier-Stecker

Sie haben die Möglichkeit die Zuordnung von Terminal- und Elektronik-Modul zu fixieren. Hierbei kommen Kodier-Stecker (Best-Nr.: 000-0AC00) von VIPA zum Einsatz. Die Kodier-Stecker bestehen aus einem Kodierstift-Stift und einer Kodier-Buchse, wobei durch Zusammenfügen von Elektronik- und Terminal-Modul der Kodier-Stift am Terminal-Modul und die Kodier-Buchse im Elektronik-Modul verbleiben. Dies gewährleistet, dass nach Austausch des Elektronik-Moduls nur wieder ein Elektronik-Modul mit der gleichen Kodierung gesteckt werden kann.

2.3 Abmessungen Maße CPU 01xC

Abmessungen

Maße CPU 01x

Maße Bus-Koppler und Zeilenanschaltung Slave

Maße Zeilenanschaltung Master

Montage Bus-Koppler

Maße Elektronik-Modul

Maße in mm

2.4 Montage Bus-Koppler

 Das System SLIO darf nur in einem Gehäuse gemäß IEC61010-1 9.3.2 c) eingebaut und betrieben werden.

Der Bus-Koppler besitzt Verriegelungshebel an der Oberseite. Zur Montage und Demontage sind diese Hebel nach oben zu drücken, bis diese einrasten. Stecken Sie den Bus-Koppler auf die Tragschiene. Durch Klappen des Verriegelungshebels nach unten wird der Bus-Koppler auf der Tragschiene fixiert. Der Bus-Koppler wird direkt auf eine Tragschiene montiert. Sie können bis zu 64 Module stecken. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung entsprechend erweitern. Montage Bus-Koppler

Vorgehensweise

1. Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm bzw. 80mm bei Verwendung von Schirmschienen-Trägern einhalten.

2. Klappen Sie die Verriegelungshebel des Bus-Kopplers nach oben, stecken Sie den Bus-Koppler auf die Tragschiene und klappen Sie die Verriegelungshebel wieder nach unten.

Montage Bus-Koppler

Montage Peripherie-Module

1. Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Bus-Kopplers, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.

2. Montieren Sie die gewünschten Peripherie-Module.

3. Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken. Handelt es sich bei dem äußersten Modul um ein Klemmen-Modul, so ist zur Adaption der obere Teil der Bus-Blende abzubrechen.

Verdrahtung > Verdrahtung Bus-Koppler

2.5 Verdrahtung

Temperatur externer Kabel beachten!

Aufgrund der Wärmeableitung des Systems kann die Temperatur externer Kabel ansteigen. Aus diesem Grund muss die Spezifikation der Temperatur für die Verkabelung 5°C über der Umgebungstemperatur gewählt werden!

VORSICHT!

Isolierbereiche sind zu trennen!

Das System ist spezifiziert für SELV/PELV-Umgebung. Geräte, welche an das System angeschlossen werden, müssen für SELV/PELV-Umgebung spezifiziert sein. Die Verkabelung von Geräten, welche der SELV/PELV-Umgebung nicht entsprechen, sind getrennt von der SELV/PELV-Umgebung zu verlegen!

2.5.1 Verdrahtung Bus-Koppler

Terminal-Modul Anschlussklemmen Die System SLIO Bus-Koppler haben ein Power-Modul integriert. Bei der Verdrahtung werden Anschlussklemmen mit Federklemmtechnik eingesetzt. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signalund Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

Daten

 U_{max}
 30V DC

 I_{max}
 10A

 Querschnitt
 0,08 ... 1,5mm² (AWG 28 ... 16)

 Abisolierlänge
 10mm

Verdrahtung Vorgehensweise

- 1 Pin-Nr. am Steckverbinder
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht

Verdrahtung > Verdrahtung Bus-Koppler

Standard-Verdrahtung

- **1.** Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Entriegelung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- **3.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

Verdrahtung > Verdrahtung Bus-Koppler

PM - Power Modul

Für	Drähte	mit	einem	Querschnitt	von 0	.08mm ²	bis '	1.5mm ² .
u	Dianic		CILICITI	Quersermitt	10110	,0011111	013	.,

Pos.	Funktion	Тур	Beschreibung
1			nicht belegt
2	DC 24V	E	DC 24V für Leistungsversorgung
3	0V	E	GND für Leistungsversorgung
4	Sys DC 24V	E	DC 24V für Elektronikversorgung
5			nicht belegt
6	DC 24V	E	DC 24V für Leistungsversorgung
7	0V	E	GND für Leistungsversorgung
8	Sys 0V	E	GND für Elektronikversorgung

E: Eingang

VORSICHT!

Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!

Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt. Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

Absicherung

- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung f
 ür Bus-Koppler und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren.

Verdrahtung > Verdrahtung Peripherie-Module

Schirm auflegen

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- **1.** Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.5.2 Verdrahtung Peripherie-Module

Terminal-Modul Anschlussklemmen

VORSICHT!

Keine gefährliche Spannungen anschließen!

Sofern dies nicht ausdrücklich bei der entsprechenden Modulbeschreibung vermerkt ist, dürfen Sie an dem entsprechenden Terminal-Modul keine gefährlichen Spannungen anschließen!

Bei der Verdrahtung von Terminal-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher. Verdrahtung > Verdrahtung Peripherie-Module

Daten

 U_{max}
 240V AC / 30V DC

 I_{max}
 10A

 Querschnitt
 0,08 ... 1,5mm² (AWG 28 ... 16)

 Abisolierlänge
 10mm

Verdrahtung Vorgehensweise

Schirm auflegen

1	_	206	— 2 — 3
1	_		— 3

- 1 Pin-Nr. am Steckverbinder
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht

- **1.** Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- 2. Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- 3. Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- **1.** Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

Verdrahtung > Verdrahtung Power-Module

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.5.3 Verdrahtung Power-Module

Terminal-Modul Anschlussklemmen Power-Module sind entweder im Kopf-Modul integriert oder können zwischen die Peripherie-Module gesteckt werden. Bei der Verdrahtung von Power-Modulen kommen Anschlussklemmen mit Federklemmtechnik zum Einsatz. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen. Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

Daten

 U_{max}
 30V DC

 I_{max}
 10A

 Querschnitt
 0,08 ... 1,5mm² (AWG 28 ... 16)

 Abisolierlänge
 10mm

Verdrahtung > Verdrahtung Power-Module

Verdrahtung Vorgehensweise

- Pin-Nr. am Steckverbinder 1
- 2 Entriegelung für Schraubendreher
- 3 Anschlussöffnung für Draht

- **1.** Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt 3. sicher mit der Anschlussklemme verbunden.

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
 (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

Standard-Verdrahtung

PM - Power Modul

Verdrahtung > Verdrahtung Power-Module

	1—	1 5	—5
	2—	206	—6
	3—	377	-7
	4	4080	8
DC24V 0V	J		
DC24V - 0V -		ノ	

Für Drähte mit einem Que	erschnitt von 0,08mm	² bis 1,5mm ²
--------------------------	----------------------	-------------------------------------

Pos.	Funktion	Тур	Beschreibung
1			nicht belegt
2	DC 24V	E	DC 24V für Leistungsversorgung
3	0V	E	GND für Leistungsversorgung
4	Sys DC 24V	E	DC 24V für Elektronikversorgung
5			nicht belegt
6	DC 24V	E	DC 24V für Leistungsversorgung
7	0V	E	GND für Leistungsversorgung
8	Sys 0V	E	GND für Elektronikversorgung

E: Eingang

VORSICHT!

Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!

Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt. Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

Abs	ich	eru	ing
-----	-----	-----	-----

- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung f
 ür Kopf-Modul und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren.

Verdrahtung > Verdrahtung Power-Module

Einsatz von Power-Modulen

- Das Power-Modul mit der Best.-Nr. 007-1AB00 setzen Sie ein, wenn die 10A f
 ür die Leistungsversorgung nicht mehr ausreichen. Sie haben so auch die M
 öglichkeit, Potenzialgruppen zu bilden.
- Das Power-Modul mit der Best.-Nr. 007-1AB10 setzen Sie ein, wenn die 3A für die Elektronikversorgung am Rückwandbus nicht mehr ausreichen. Zusätzlich erhalten Sie eine neue Potenzialgruppe für die DC 24V Leistungsversorgung mit max. 4A.
- Durch Stecken des Power-Moduls 007-1AB10 können am nachfolgenden Rückwandbus Module gesteckt werden mit einem maximalen Summenstrom von 2A. Danach ist wieder ein Power-Modul zu stecken. Zur Sicherstellung der Spannungsversorgung dürfen die Power-Module beliebig gemischt eingesetzt werden.

Power-Modul 007-1AB00

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene
- (3) DC 24V für Leistungsversorgung I/O-Ebene (max. 4A)
- (4) DC 24V für Elektronikversorgung I/O-Ebene

Demontage > Demontage Bus-Koppler

Schirm auflegen

- 1 Schirmschienen-Träger
- 2 Schirmschiene (10mm x 3mm)
- 3 Schirmanschlussklemme
- 4 Kabelschirm

Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich. Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

- **1.** Jedes System SLIO-Modul besitzt an der Unterseite Aufnehmer für Schirmschienen-Träger. Stecken Sie Ihre Schirmschienenträger, bis diese am Modul einrasten. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.
- **2.** Legen Sie Ihre Schirmschiene in den Schirmschienen-Träger ein.

3. Legen Sie ihre Kabel mit dem entsprechend abisolierten Kabelschirm auf und verbinden Sie diese über die Schirmanschlussklemme mit der Schirmschiene.

2.6 Demontage

2.6.1 Demontage Bus-Koppler

Vorgehensweise

VORSICHT!

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden! Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

- **1.** Machen Sie Ihr System stromlos.
- **2.** Entfernen Sie falls vorhanden die Verdrahtung am Bus-Koppler.

Demontage > Demontage Bus-Koppler

3.

Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Betätigen Sie die Entriegelung an der Unterseite des rechts neben dem Bus-Koppler befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

4. Klappen Sie alle Verriegelungshebel des zu tauschenden Bus-Kopplers nach oben.

- 5. Jiehen Sie den Bus-Koppler nach vorne ab.
- **6.** Zur Montage klappen Sie alle Verriegelungshebel des zu montierenden Bus-Kopplers nach oben.

- **7.** Stecken Sie den zu montierenden Bus-Koppler an das linke Modul und schieben Sie den Bus-Koppler, geführt durch die Führungsleisten, auf die Tragschiene.
- 8. Klappen Sie alle Verriegelungshebel wieder nach unten.

Demontage > Demontage Peripherie-Module

- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- **10.** Verdrahten Sie Ihren Bus-Koppler.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

2.6.2 Demontage Peripherie-Module

Vorgehensweise

Austausch eines Elektronik-Moduls **1.** Machen Sie Ihr System stromlos.

- **2.** Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen.
- **3.** Für die Montage schieben Sie das neue Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite am Terminal-Modul einrastet.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

Austausch eines Peripherie-Moduls

- **1.** Machen Sie Ihr System stromlos.
- **2.** Entfernen Sie falls vorhanden die Verdrahtung am Modul.

3.

Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das <u>rechts</u> daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Betätigen Sie die Entriegelung an der Unterseite des rechts daneben befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

30

Demontage > Demontage Peripherie-Module

VIPA System SLIO

5. Jiehen Sie das Modul nach vorne ab.

6. Sur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.

4. Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.

- 7. Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- 8. Klappen Sie den Verriegelungshebel wieder nach unten.

- Austausch einer Modul-
- gruppe

3.

- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- 10. Verdrahten Sie Ihr Modul.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.
- 1. Machen Sie Ihr System stromlos.
- 2. Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe.
 - Bei der Demontage und beim Austausch eines (Kopf)-Moduls oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das rechts daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Betätigen Sie die Entriegelung an der Unterseite des rechts neben der Modulgruppe befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.

Demontage > Demontage Peripherie-Module

Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden 7. Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.

6. Sur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modul-

4. Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.

8. Klappen Sie alle Verriegelungshebel wieder nach unten.

5. Jiehen Sie die Modulgruppe nach vorne ab.

gruppe nach oben.

- 9. Stecken Sie wieder das zuvor entnommene Elektronik-Modul.
- **10.** Verdrahten Sie Ihre Modulgruppe.
 - ⇒ Jetzt können Sie Ihr System wieder in Betrieb nehmen.

2.7 Hilfe zur Fehlersuche - LEDs

Allgemein

Jedes Modul besitzt auf der Frontseite die LEDs RUN und MF. Mittels dieser LEDs können Sie Fehler in Ihrem System bzw. fehlerhafte Module ermitteln.

In den nachfolgenden Abbildungen werden blinkende LEDs mit 🌣 gekennzeichnet.

Summenstrom der Elektronik-Versorgung überschritten

Verhalten: Nach dem Einschalten bleibt an jedem Modul die RUN-LED aus und es leuchtet sporadisch die MF-LED.

Ursache: Der maximale Strom für die Elektronikversorgung ist überschritten.

Abhilfe: Platzieren Sie immer, sobald der Summenstrom für die Elektronikversorgung den maximalen Strom übersteigt, das Power-Modul 007-1AB10. *Kapitel 2.5.3 "Verdrahtung Power-Module" auf Seite 23*

Konfigurationsfehler

RUN MF MF MF MF MF MF ĹМЕ MF MF Ь́МЕ

Verhalten: Nach dem Einschalten blinkt an einem Modul bzw. an mehreren Modulen die MF-LED. Die RUN-LED bleibt ausgeschaltet.

Ursache: An dieser Stelle ist ein Modul gesteckt, welches nicht dem aktuell konfigurierten Modul entspricht.

Abhilfe: Stimmen Sie Konfiguration und Hardware-Aufbau aufeinander ab.

Modul-Ausfall

Verhalten: Nach dem Einschalten blinken alle RUN-LEDs bis zum fehlerhaften Modul. Bei allen nachfolgenden Modulen leuchtet die MF LED und die RUN-LED ist aus.

Ursache: Das Modul rechts der blinkenden Module ist defekt.

Abhilfe: Ersetzen Sie das defekte Modul.

2.8 Aufbaurichtlinien				
Allgemeines	Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS- Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.			
Was bedeutet EMV?	Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektri- schen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.			
	Die Komponenten von VIPA sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrach- tung einbeziehen.			
Mögliche Störeinwir- kungen	Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steue- rung einkoppeln:			
	 Elektromagnetische Felder (HF-Einkopplung) Magnetische Felder mit energischer Frequenz 			
	 Magnetische Feider mit energietechnischer Frequenz Bus-System 			
	 Stromversorgung Schutzleiter 			
	Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.			
	Man unterscheidet:			
	 galvanische Kopplung kapazitive Kopplung induktive Kopplung Strahlungskopplung 			
Grundregeln zur Sicher- stellung der EMV	Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.			
	 Achten Sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile. Stellen Sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutz- leitersystem her. Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm. Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet. Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung. Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversor- gungs-, Signal- und Datenleitungen). Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln. Führen Sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche). 			

Aufbaurichtlinien

- Achten Sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen.
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie f
 ür geschirmte Datenleitungen metallische oder metallisierte Steckergeh
 äuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsma
 ßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsma
 ßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.
- Schirmung von Leitungen Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störguelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. µA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergeh
 äuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

Allgemeine Daten

Bitte bei der Montage beachten!

VORSICHT!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

2.9 Allgemeine Daten

Konformität und Approbation		
Konformität		
CE	2014/35/EU	Niederspannungsrichtlinie
	2014/30/EU	EMV-Richtlinie
Approbation		
UL	-	Siehe Technische Daten
Sonstiges		
RoHS	2011/65/EU	Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten

Personenschutz und Geräteschutz			
Schutzart	-	IP20	
Potenzialtrennung			
Zum Feldbus	-	Galvanisch entkoppelt	
Zur Prozessebene	-	Galvanisch entkoppelt	
Isolationsfestigkeit	-	-	
Isolationsspannung gegen Bezugserde			
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V	
Schutzmaßnahmen	-	gegen Kurzschluss	

Umgebungsbedingungen gemäß EN 61131-2				
Klimatisch				
Lagerung /Transport	EN 60068-2-14	-25+70°C		
Betrieb				
Horizontaler Einbau hängend	EN 61131-2	0+60°C		
Horizontaler Einbau liegend	EN 61131-2	0+55°C		
Vertikaler Einbau	EN 61131-2	0+50°C		
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 95%)		
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2		

Allgemeine Daten

Umgebungsbedingungen gemäß EN 61131-2			
Aufstellhöhe max.	-	2000m	
Mechanisch			
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz	
Schock	EN 60068-2-27	15g, 11ms	

Montagebedingungen			
Einbauort	-	Im Schaltschrank	
Einbaulage	-	Horizontal und vertikal	

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit EN 61000-6-2			Industriebereich
Zone B		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3
		EN 61000-4-5	Surge, Schärfegrad 3 *

*) Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.
3 Hardwarebeschreibung

3.1 Leistungsmerkmale

053-1EC01

Der EtherCAT-Koppler IM 053EC ermöglicht die einfache Anbindung von dezentralen Peripheriemodulen an EtherCAT. EtherCAT bietet Echtzeit-Ethernet-Technologie auf E/A-Ebene.

- EtherCAT-Koppler für maximal 64 Peripherie-Module
- Ethernet-basierendes Feldbussystem mit hoher Echtzeitfähigkeit
- Unterstützung des CANopen Applikationsprofil (CANopen über Ethernet):
 - CoE
 - FoE
- Online-Projektierung über das Master-System
- Umfangreiche Diagnosefunktionen
- RJ45-Buchse 100BaseTX
- Operation Modes:
 - FreeRun
 - SyncManager-Event
 - Distributed Clock
- HotConnect
 - Station Alias Adresse \rightarrow über SII parametrieren
 - Explicit Device ID → über Dip-Schalter
- Easy Maintenance
- Anzeige von Ersatzwerten möglich
- Status-LED für RUN
- Netzwerk-LEDs f
 ür Link/Activity
- Fehler LED

Bestelldaten

Тур	Bestellnummer	Beschreibung
IM 053EC	053-1EC01	EtherCAT-Koppler für System SLIO

Aufbau > Schnittstellen

3.2 Aufbau

053-1EC01

- Verriegelungshebel Terminal-Modul
- Beschriftungsstreifen Bus-Interface
- LED-Statusanzeige Bus-Interface
- Beschriftungsstreifen Power-Modul
- LED-Statusanzeige Power-Modul Rückwandbus
- 7 DC 24V Leistungsversorgung
- Power-Modul
- EtherCAT RJ45 Bus-Interface "IN"
- 10 EtherCAT RJ45 Bus-Interface "OUT"
- 11 Entriegelung Power-Modul
- 12 Bus-Interface
- 13 Anschlussklemmen Power-Modul
- 14 Adress-Schalter
- 3.2.1 Schnittstellen

VORSICHT!

Bus-Interface und Power-Modul des Bus-Kopplers dürfen nicht voneinander getrennt werden!

Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

PM - Power Modul

	1—	105	—5
	2—	206	-6
	3—	377	-7
	4—	4080	8
DC24V • 0V •	J		
DC24V • 0V •		ノ	

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung
1			nicht belegt
2	DC 24V	E	DC 24V für Leistungsversorgung
3	0V	E	GND für Leistungsversorgung
4	Sys DC 24V	E	DC 24V für Elektronikversorgung
5			nicht belegt
6	DC 24V	E	DC 24V für Leistungsversorgung
7	0V	E	GND für Leistungsversorgung
8	Sys 0V	E	GND für Elektronikversorgung

E: Eingang

Schnittstelle für EtherCAT-Kommunikation

8polige RJ45-Buchsen:

- Ein EtherCAT-Netz besteht immer aus einem Master und einer beliebigen Anzahl an EtherCAT-Slaves (Koppler).
- Jeder EtherCAT-Slave besitzt eine RJ45-Buchse "IN" und "OUT". Das ankommende EtherCAT-Kabel aus Richtung des Masters ist in die mit "IN" (Port 0) bezeichnete Buchse zu stecken. Die mit "OUT" (Port 1) bezeichnete Buchse ist mit dem nachfolgenden Teilnehmer zu verbinden. Beim jeweiligen letzten Teilnehmer bleibt die "OUT"-Buchse frei.
- EtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen Standard-CAT5-Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu 100m zwischen 2 Teilnehmern möglich.
- In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen.
- Der Einsatz von Hubs ist nicht möglich.

Aufbau > LEDs

3.2.2 Adress-Schalter

Zur eindeutigen Identifikation des EtherCAT-Slaves ist diesem eine *Device-ID* zuzuordnen. Diese Adresse darf nur einmal am Bus vergeben sein. Zur Vergabe einer Hot-Connect-Adresse über Explicit Device ID & *Kapitel 4.2 "Einstellung der HotConnect-Adresse" auf Seite 48*

	<u> </u>		1
	1		2
	2		3
	4		4
	8		5
	16	—	6
	32		7
	64		8
1	0		

Pos.	Wert	Beispiel		
		Zustand	Adresse	
1	nicht belegt		1+2+32=35	
2	1	1	Adresse: 35	
3	2	1		
4	4	0		
5	8	0		
6	16	0		
7	32	1		
8	64	0		

3.2.3 LEDs LEDs Power-Modul

	PWR IO	PWR	PF	Beschreibung
PWR IO $-$	📕 grün	📕 grün	rot	
PWR-		Х		Leistungsversorgung OK
PF —				Elektronikversorgung OK
	Х	Х		Sicherung Elektronikversorgung defekt
	nicht relev	vant: X		

Aufbau > LEDs

Statusanzeige Bus-Interface

LED		Beschreibung		
PWR	grün	Bus-Interface wird mit Spannung versorgt		
SF	rot	 1 Flash pro s: Statuswechsel aufgrund eines Fehlers, z.B. beim Ziehen eines Moduls 2 Flash pro s: EtherCAT-Timeout (Watchdog), z.B. Ausfall des EtherCAT-Masters Blinken mit 2,5Hz: Bei Konfigurationsfehler Blinkt abwechselnd mit MT bei Firmwareupdate 		
MT	🖊 gelb	Blinkt abwechselnd mit SF bei Firmwareupdate		
RUN		aus: Bus-Koppler im Initialisierungs-Zustand		
	grün	Bus-Koppler im Operational-Zustand		
	🗾 grün	 Blinken mit 2,5Hz: Bus-Koppler im Pre-Operational- Zustand SingleFlash: Bus-Koppler im Safe-Operational-Zustand 		
L/A1		aus: keine Kommunikation zum Vorgänger		
	🗾 grün	Blinken mit 10Hz: Vorhergehender EtherCAT-Teilnehmer is angeschlossen		
L/A2		aus: keine Kommunikation zum Nachfolger		
	Z grün	Blinken mit 10Hz: Nachfolgender EtherCAT-Teilnehmer ist angeschlossen		

Technische Daten

3.3 Technische Daten

Artikelnr.	053-1EC01
Bezeichnung	IM 053EC - EtherCAT-Slave
Modulkennung	-
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8 V
Verpolschutz	\checkmark
Stromaufnahme (im Leerlauf)	95 mA
Stromaufnahme (Nennwert)	0,95 A
Einschaltstrom	3,9 A
l²t	0,14 A²s
max. Stromabgabe am Rückwandbus	3 A
max. Stromabgabe Lastversorgung	10 A
Verlustleistung	3 W
Status, Alarm, Diagnosen	
Statusanzeige	ја
Alarme	ja, parametrierbar
Prozessalarm	ja, parametrierbar
Diagnosealarm	ja, parametrierbar
Diagnosefunktion	ja, parametrierbar
Diagnoseinformation auslesbar	möglich
Versorgungsspannungsanzeige	grüne LED
Wartungsanzeige	-
Sammelfehleranzeige	rote SF-LED
Kanalfehleranzeige	keine
Ausbau	
Baugruppenträger max.	1
Baugruppen je Baugruppenträger	64
Anzahl Digitalbaugruppen, max.	64
Anzahl Analogbaugruppen, max.	64
Kommunikation	
Feldbus	EtherCAT
Physik	Ethernet 100 MBit
Anschluss	2 x RJ45
Topologie	Linienstruktur mit Abzweigen und Stichen
Potenzialgetrennt	\checkmark

Technische Daten

Artikelnr.	053-1EC01
Teilnehmeranzahl, max.	65535
Teilnehmeradresse	-
Übertragungsgeschwindigkeit, min.	100 Mbit/s
Übertragungsgeschwindigkeit, max.	100 Mbit/s
Adressbereich Eingänge, max.	1024 Byte
Adressbereich Ausgänge, max.	1024 Byte
Anzahl TxPDOs, max.	-
Anzahl RxPDOs, max.	-
Datengrößen	
Eingangsbytes	18
Ausgangsbytes	-
Parameterbytes	-
Diagnosebytes	-
Gehäuse	
Material	PPE / PPE GF10
Befestigung	Profilschiene 35mm
Mechanische Daten	
Abmessungen (BxHxT)	48,5 mm x 109 mm x 76,5 mm
Gewicht Netto	160 g
Gewicht inklusive Zubehör	160 g
Gewicht Brutto	175 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL	in Vorbereitung
Zertifizierung nach KC	in Vorbereitung

Grundlagen EtherCAT > Allgemeines

4 Einsatz

4.1 Grundlagen EtherCAT

4.1.1 Allgemeines

	Feldbusse haben sich seit vielen Jahren in der Automatisierungstechnik etabliert. Da einerseits die Forderung nach immer höheren Geschwindigkeiten besteht, andererseits bei dieser Technologie die technischen Grenzen bereits erreicht wurden, musste nach neuen Lösungen gesucht werden.
	Das aus der Bürowelt bekannte Ethernet ist mit seinen heute überall verfügbaren 100MBit/s sehr schnell. Durch die dort verwendete Art der Verkabelung und den Regeln bei den Zugriffsrechten ist dieses Ethernet nicht echtzeitfähig. Dieser Effekt wurde mit EtherCAT [®] beseitigt.
EtherCAT [®]	 Für EtherCAT[®] gilt: EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. EtherCAT bedeutet Ethernet for Controller and Automation Technology. Es wurde ursprünglich von der Firma Beckhoff Automation GmbH entwickelt und wird nun von der EtherCAT Technology Group (ETG) unterstützt und weiterentwickelt. Die ETG ist die weltgrößte internationale Anwender- und Herstellervereinigung für Industrial Ethernet. EtherCAT ist ein offenes Ethernet-basierendes Feldbus-System, das in der IEC genormt wird. EtherCAT erfüllt als offenes Feldbus-System das Anwenderprofil für den Bereich industrieller Echtzeitsysteme. Im Gegensatz zur klassischen Ethernet-Kommunikation erfolgt bei EtherCAT der Datenaustausch der I/O-Daten bei 100MBit/s im Vollduplex-Betrieb, während das Telegramm die Koppler durchläuft. Da auf diese Weise ein Telegramm in Sende- und in Empfangsrichtung die Daten vieler Teilnehmer erreicht, besitzt EtherCAT eine Nutzdatenrate von über 90%. Das für Prozessdaten optimierte EtherCAT-Protokoll wird direkt im Ethernet-Telegramm transportiert. Dieses wiederum kann aus mehreren Untertelegrammen bestehen, die jeweils einen Speicherbereich des Prozessabbilds bedienen.
Übertragungsmedium	EtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen Standard-CAT5- Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu 100m zwischen 2 Teilneh- mern möglich.
	In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen. Der Einsatz von Hubs ist nicht möglich.
Kommunikationsprinzip	Bei EtherCAT sendet der Master ein Telegramm an den ersten Teilnehmer. Dieser ent- nimmt aus dem laufenden Datenstrom die für ihn bestimmten Daten, fügt seine Antwort- daten in das Telegramm ein und sendet das Telegramm weiter zum nächsten Teilnehmer. Dieser verfährt auf die gleiche Weise mit dem Telegramm.
	Ist das Telegramm beim letzten Teilnehmer angekommen, stellt dieser fest, dass kein weiterer Teilnehmer angeschlossen ist und sendet das Telegramm zurück an den Master. Hierbei wird das Telegramm über das andere Adernpaar durch alle Teilnehmer zum Master gesendet (Vollduplex). Durch die Steckreihenfolge und die Nutzung der Volldu- plex-Technologie stellt EtherCAT einen logischen Ring dar.
EtherCAT State Machine	Über die EtherCAT State Machine wird der Zustand der EtherCAT-Teilnehmer gesteuert.

Objektverzeichnis (SDOs)	Im Objektverzeichnis werden alle Parameter-, Diagnose-, Prozess- oder sonstige Daten aufgeführt, die über EtherCAT gelesen oder beschrieben werden können. Über den SDO- Informations-Dienst können Sie auf das Objektverzeichnis zugreifen. Zusätzlich liegt das Objektverzeichnis in der Gerätebeschreibungsdatei ab.
Prozessdaten (PDOs)	Der EtherCAT Data Link Layer ist für die schnelle Übertragung von Prozessdaten opti- miert. Hier wird festgelegt, wie die Prozessdaten des Gerätes den EtherCAT-Prozess- daten zugeordnet sind und wie die Applikation auf dem Gerät zum EtherCAT-Zyklus syn- chronisiert ist. Die Zuordnung der Prozessdaten (Mapping) erfolgt über die PDO- Mapping- und die SyncManager-PDO-Assign-Objekte. Diese beschreiben, welche Objekte aus dem Objektverzeichnis als Prozessdaten mit EtherCAT übertragen werden. Über die SyncManager-Communication-Objekte wird festgelegt, mit welcher Zykluszeit die zugehörigen Prozessdaten über EtherCAT übertragen werden und in welcher Form sie für die Übertragung synchronisiert werden.
Emergencies	Über Emergencies können Diagnosen, Prozessereignisse und Fehler beim Zustands- wechsel der State Machine übertragen werden.
	Statusmeldungen dagegen, die den aktuellen Zustand des Gerätes anzeigen, sollten direkt mit den Prozessdaten übertragen werden.
Verteilte Uhren (DC)	Bedingt duch die Laufzeit des EtherCAT-Telegramms auf dem Bus, werden bei den EtherCAT Slave-Stationen die Ausgänge zu unterschiedlichen Zeitpunkten aktiviert und die Eingänge zu unterschiedlichen Zeitpunkten eingelesen. Für einen taktsynchronen Zugriff auf die Prozessdaten stellt EtherCAT die Funktionalität von "Verteilte Uhren" bereit. Mit "Verteilte Uhren" (Distributed Clocks = DC) bezeichnet man unter EtherCAT einen logischen Verbund aus "Uhren", welche sich in den EtherCAT-Teilnehmern befinden. Hiermit ist es möglich, in allen Busteilnehmern lokal eine synchrone Uhrzeit vorzuhalten. Unter Einsatz von DC werden zum jeweils gleichen Zeitpunkt aktuelle Ausgangswerte auf den Slave-Stationen aktiviert, und die Eingangswerte zu genau diesem Zeitpunkt eingelesen. Dieser Zeitpunkt wird auch <i>Sync</i> -Signal genannt. Falls ein EtherCAT-Teilnehmer DC unterstützt, beinhaltet er eine eigene Uhr. Nach dem Einschalten arbeitet diese zunächst lokal, basierend auf einem eigenen Taktgeber. Durch Auswahl einer EtherCAT-Slave-Station, welche die Referenzzeit liefern soll, können sich die verteilten Uhren synchronisieren. Diese <i>Referenzuhr</i> stellt somit die Systemzeit dar.

Grundlagen EtherCAT > EtherCAT Zustandsmaschine

4.1.2 EtherCAT Zustandsmaschine

Zustände

In jedem EtherCAT-Kommunikationsteilnehmer ist eine *Zustandsmaschine* implementiert. Für jeden Zustand ist definiert, welche Kommunikationsdienste über EtherCAT aktiv sind. Die Zustandsmaschine der Slave-Stationen wird über die Zustandsmaschine des EtherCAT-Masters gesteuert.

4.1.3 CoE - CANopen over Ethernet

CoE steht für CANopen over EtherCAT. Mit CANopen haben Sie eine einheitliche Anwenderschnittstelle, die einen vereinfachten Systemaufbau mit unterschiedlichsten Geräten ermöglicht. Mit CoE können Sie komfortabel auf alle Geräteparameter zugreifen und gleichzeitig Daten einlesen und ausgeben. Echtzeitdaten lesen Sie über PDOs und die Parametrierung führen Sie über SDOs aus. Weiter stehen Ihnen Emergency-Objekte zur Verfügung.

DA Destination address

SA Source address

CRC Checksum

4.1.4 ESI-Dateien

Von VIPA erhalten Sie für den EtherCAT-Koppler ESI-Dateien. Diese Dateien befinden sich entweder auf dem beiliegenden Datenträger oder unter "Service / Support → Downloads → Config Dateien" von www.vipa.com. Installieren Sie die ESI-Dateien in Ihrem Projektiertool. Nähere Hinweise zur Installation der ESI-Dateien finden Sie im Handbuch zu Ihrem Projektiertool. Zur Konfiguration in Ihrem Projektiertool befinden sich in den ESI-Dateien alle System SLIO Module in Form von XML-Daten. Einstellung der HotConnect-Adresse > HotConnet über Explicit Device ID

4.2 Einstellung der HotConnect-Adresse

Zur eindeutigen Identifikation des EtherCAT-Slaves ist diesem eine so genannte *HotConnect*-Adresse zuzuordnen. Diese Adresse darf nur einmal am Bus vergeben sein. Für die Einstellung der *HotConnect*-Adresse haben Sie folgende Möglichkeiten:

- Explicit Device ID: Adress-Schalter an der Baugruppe Standard-Einstellung.
- Configured Station Alias: Wert, welcher in das SII (EEPROM) der Slave-Station eingetragen wird. SSI steht f
 ür Slave Information Interface.

Standardmäßig wird die Slave-Station bei *HotConnect* über die *Explicit Device ID* adressiert. Zur Änderung des Adressierungstyps, muss im Projektiertool das entsprechende ESC-Register bei den *HotConnect*-Einstellungen angegeben werden:

- Explicit Device ID: ESC-Register 0x0134 (Standard)
- Configured Station Alias: ESC-Register 0x0012

4.2.1 HotConnet über Explicit Device ID

Vorgehensweise

Die Vorgabe der *HotConnect*-Adresse über *Explicit Device ID* erfolgt nach folgender Vorgehensweise:

1. Schalten Sie die Spannungsversorgung des Bus-Kopplers aus.

2. Stellen Sie die Adresse am Adress-Schalter ein.

Pos.	Wert	Beispiel		
		Zustand	Adresse	
1	nicht belegt		1+2+32=35	
2	1	1	Adresse: 35	
3	2	1		
4	4	0		
5	8	0		
6	16	0		
7	32	1		
8	64	0		

⇒ Der am Adress-Schalter eingestellte Wert wird als *Explicit Device ID* übernommen.

Sollte die Adressierung über Adress-Schalter nicht aktiviert sein, so können Sie diese über Ihr Projektier-Tool aktivieren. Geben Sie hierzu in Ihrem Projektiertool die ESC-Register Adresse 0x0134 an.

Informationen, wie sie in Ihrem Projektier-Tool eine ESC-Register Adresse eingeben können, finden Sie im zugehörigen Handbuch.

Beispielsweise müssen Sie im EtherCAT Manager in Ihrer Konfiguration die "Erweiterten Einstellungen" der Slave-Station öffnen, "Überprüfe Identifikation" aktivieren und unter "Wähle lokale Adresse" die ESC-Register Adresse 0x0134 eintragen.

4.2.2 HotConnet über Configured Station Alias

Vorgehensweise

Die Vorgabe der *HotConnect*-Adresse über *Configured Station Alias* erfolgt nach folgender Vorgehensweise:

- **1.** Verbinden Sie sich in Ihrem Projektier-Tool mit der entsprechenden Slave-Station. Diese muss sich im Zustand INIT befinden.
- **2.** Passen Sie im SII (EEPROM) die *Configured Station Alias* an.
- **3.** Führen Sie einen Power-Cycle durch.
 - ⇒ Der im SII eingestellte Wert wird als *Configured Station Alias* übernommen.

Informationen, wie sie in Ihrem Projektier-Tool eine ESC-Register Adresse und eine Configured Station Alias Adresse eingeben können, finden Sie im zugehörigen Handbuch.

Beispielsweise müssen Sie im EtherCAT Manager in Ihrer Konfiguration die "Erweiterten Einstellungen" der Slave-Station öffnen, "Überprüfe Identifikation" aktivieren und unter "Wähle lokale Adresse" die ESC-Register Adresse 0x0012 eintragen. Hierbei ist die Configured Station Alias Adresse im "Diagnose-Modus" über "EEPROM" und in "Gruppe" über "Identifikator" anzugeben. Synchronisationsarten

4.3 Synchronisationsarten

Übersicht

- Für das Übertragen der Prozessdaten bei EtherCAT stehen 3 Synchronisationsarten zur Verfügung:
- Synchron mit SyncManager-Event (default)
- Free Run
- Synchron mit Distributed Clocks (DC)

In den Projektier-Tools sind meist die Synchronisationsarten *Free Run* und *Synchron mit SyncManager-Event* zusammengefasst als Betriebsart *"Free Run / SM-Synchron"*.

Synchron mit SyncManager-Event (default)

In der Standardeinstellung arbeitet der IM 053EC mit der Synchronisationsart Synchron mit SyncManager-Event.

In dieser Synchronisationsart wird mit dem Empfang eines EtherCAT-Frames ein Sync-Manager-Event (Interrupt) ausgelöst. Dieser Interrupt stößt dann die Bearbeitung der Prozessdaten an.

- 1 EtherCAT-Frame
- 2 Jitter, abhängig von der Master-Implementierung

Free Run

Zur Verwendung der Synchronisationsart *Free Run* müssen Sie in Ihrem Projektier-Tool die Synchronisationsart auf *Free Run / SM-Synchron* einstellen und im Zustand *PreOp* auf die Objekte 0x1C32:01 und 0x1C33:01 den Wert 0 schreiben. Das Beschreiben der Objekte kann auch als Init-Kommando erfolgen. Näheres hierzu finden Sie im Handbuch zu Ihrem Projektiert-Tool.

In der Synchronisationsart *Free Run* wird die Bearbeitung der Prozessdaten von einem internen Slave-Timer gesteuert.

- 1 EtherCAT-Frame
- 2 Local Timer Event (Main Loop), abhängig von der Slave-Implementierung
- 3 Jitter, abhängig von der Master-Implementierung

Zugriff auf das System SLIO > Allgemein

Synchron mit Distributed Clocks (DC)

Zur Verwendung der Synchronisationsart *Synchron mit Distributed Clocks (DC)* müssen Sie in Ihrem Projektier-Tool die Synchronisationsart auf *Synchron mit DC-Sync0* einstellen. Näheres hierzu finden Sie im Handbuch zu Ihrem Projektiert-Tool.

Bei dieser Synchronisationsart werden, nach dem Empfang des EtherCAT-Frames, die Prozessein- bzw. -ausgangsdaten taktsynchron mit dem *DC-Sync-Event* gelesen bzw. geschrieben. Das *DC-Sync-Event* ist ein Interrupt, der bei allen DC-fähigen Slaves am Bus gleichzeitig ausgelöst wird.

- 1 EtherCAT-Frame
- 2 DC-Sync-Event (DC-Sync0)
- 3 Jitter, abhängig von der Master-Implementierung

Damit die Taktsynchronität erreicht wird, werden bei der Synchronisationsart Synchron mit Distributed Clocks (DC) keine Hardware-Retries auf dem Rückwandbus bei Prozessdatentelegrammen durchgeführt. Wenn Fehler beim Lesen oder Schreiben der Prozessdaten auf dem Rückwandbus erkannt werden, wechselt der Slave nicht nach PreOp. Ein Modulausfall wird über das NodeMonitoring erkannt.

Bei der Synchronisationsart Synchron mit Distributed Clocks (DC) darf sich kein System SLIO CP 040 am Rückwandbus befinden.

4.4 Zugriff auf das System SLIO

4.4.1 Allgemein

\bigcirc	Der EtherCAT-Slave 053-1EC01 ist nicht kompatibel zum EtherCAT-Slave
	053-1EC00.

Berechnungsformel der max. benötigten Zykluszeit in µs damit der Koppler sicher in den Zustand *Operational (Op)* wechselt:

Max. benötigte Zykluszeit (in µs) = (1,83 * Anzahl Module) + (0,33 * Σ Input und Output Bytes) + 60

Übersicht

Nachfolgend wird der Zugriff unter EtherCAT auf folgende Bereiche des System SLIO gezeigt:

- E/A-Bereich im Master-System
- E/A-Bereich
- Parameterdaten
- Modul Information
- Diagnosedaten

Angaben zur Belegung der Bereiche finden Sie in der Beschreibung zu dem entsprechenden System SLIO Modul.

Zugriff auf das System SLIO > Zugriff auf den E/A-Bereich

4.4.2 Zugriff auf den E/A-Bereich im Master-System

Bei Einsatz in einem EtherCAT-Master-System werden vom IM 053EC 17Byte im Adressbereich des EtherCAT-Masters belegt. 8Byte sind über das Objekt 0xF100 Subindex 1 und 2 im Objektverzeichnis abrufbar. Die Prozessdaten haben folgenden Aufbau:

Eingabebereich

Bytes	Funktion				
4	Prozessalarmzähler:				
	Anzahl der aufgetretenen Prozessalarme				
4	Diagnosealarmzähler:				
	Anzahl der aufgetretenen Diagnosealarme				
8	Diagnose Modulstatus				
1	Bit 0: Newest Message verfügbar				
	 Wenn dieses Bit gesetzt ist, sind neue Diagno- seeinträge im Objekt 0x10F3 vorhanden. 0x10F3:02 Newest Message auslesen und im 				
	Anwenderprogramm speichern				
	 Bit 0 neu gesetzt: erneut 0x10F3:02 auslesen und die Differenz zu dem vorher gelesenen Wert ist die Anzahl neuer Einträge 0x10F3:xx Einträge entsprechend auslesen 				
	Bytes 4 4 8 1				

Ausgabebereich

Das Modul belegt keine Bytes im Ausgabebereich

4.4.3 Zugriff auf den E/A-Bereich

Über folgende Objekte können Sie auf den E/A-Bereich zugreifen:

- PDO
- SDO

4.4.3.1 Zugriff über PDO

Sobald der EtherCAT-Koppler in den Zustand *Safe-Operational* übergeht, können Eingabe-Daten gelesen werden. Im Zustand *Operational* können Sie dann auch Ausgabe-Daten schreiben. Informationen zur Prozessdatenübertragung mittels PDO finden Sie im Handbuch zu Ihrem EtherCAT-Master. Zusätzlich werden die Ein-/Ausgabe-Daten auf SDO-Objekte gemappt.

4.4.3.2 Zugriff über SDO

Mittels SDO-Zugriff können Sie lesend auf Ein- und Ausgabedaten des Objektverzeichnisses zugreifen. Die nachfolgende Abbildung zeigt, wie die Ein-/Ausgabedaten auf die SDO-Objekte gemappt werden:

Zugriff auf das System SLIO > Zugriff auf den E/A-Bereich

IM 053 EC	SM 021 DI 2x DC24V	SM 022 DO 4x DC24V	SM 031 Al 2x 12Bit	CM 001	FM 050 1x32Bit	SM 021 DI 4x DC24V
-	l data 01h 02h	l data	l data 01h 02h	l data	l data 01h 02h	l data 01h 02h
Input Index:	0x6000	-	0x6002	-	0x6003 04h	0x6004 04h
	O data	O data 01h	O data	O data	O data 01h	O data
Output Index:	-	0x7001 04h	-	-	0x7003 04h	-
053-1EC01	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6
EtherCAT-Slot	0	1	2	-	3	4

Eingabe-Daten 0x6000 + EtherCAT-Slot

Index	Modul	Subindex
0x6000	SM 021 DI 2x DC 24V	01h, 02h
0x6002	SM 031 AI 2x 12Bit	01h, 02h
0x6003	FM 050 1x32Bit	01h, 02h, 03h, 04h
0x6004	SM 021 DI 4x DC 24V	01h, 02h, 03h, 04h

Ausgabe-Daten 0x7000 + EtherCAT-Slot

Index	Modul	Subindex
0x7001	SM 022 DO 4x DC 24V	01h, 02h, 03h, 04h
0x7003	FM 050 1x32Bit	01h, 02h, 03h, 04h

Eingabe-Daten lesen Beim Zugriff auf den Eingabe-Bereich eines System SLIO Moduls erfolgt die Adressierung über den Index (0x6000 + EtherCAT-Slot). Über Subindizes haben Sie Zugriff auf die entsprechenden Eingabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Subindex	Name	Тур	Attr.	Default- Wert	Bedeutung
0x6000 0x603F	0x00	Input Data	Unsigned8	ro		Anzahl der Subindizes der Eingabe- Daten für den entsprechenden EtherCAT-Slot
	0x01			ro		Eingabe-Daten (siehe Modul- Beschreibung)
	0x02			ro		

Zugriff auf das System SLIO > Zugriff auf den E/A-Bereich

Ausgabe-Daten lesen Beim lesenden Zugriff auf den Ausgabe-Bereich eines System SLIO Moduls erfolgt die Adressierung über den Index (0x7000 + EtherCAT-Slot). Über Subindizes haben Sie lesenden Zugriff auf die entsprechenden Ausgabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Subindex	Name	Тур	Attr.	Default- Wert	Bedeutung
0x7000 0x703F	0x00	Output Data	Unsigned8	ro		Anzahl der Subindizes der Ausgabe- Daten für den entsprechenden EtherCAT-Slot
	0x01			ro		Ausgabe-Daten (siehe Modul- Beschreibung)
	0x02			ro		

Zugriff auf das System SLIO > Zugriff auf Parameterdaten

4.4.4 Zugriff auf Parameterdaten

Die nachfolgende Abbildung zeigt, wie die Parameter-Daten auf die SDO-Objekte gemappt werden:

IM 053 EC	SM 021 DI 2x DC24V	SM 022 DO 4x DC24V	SM 031 AI 2x 12Bit	CM 001	FM 050 1x32Bit	SM 021 DI 4x DC24V	
-	Param	Param	Param 01h 02h	Param	Param 01h 02h	Param	
Param Index:	-	-	0x3102	-	0x3103	-	
 -					03h 0Fh		
053-1EC01	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	
EtherCAT-Slot	0	1	2	-	3	4	

Parameter-Daten 0x3100 + EtherCAT-Slot

Index	Modul	Subindex
0x3102	SM 031 AI 2x 12Bit	01h, 02h
0x3103	FM 050 1x32Bit	01h 0Fh

Zugriff auf die Parameter Die Modulparametrierung erfolgt über SDO-Transfer. Hierbei adressieren Sie über den *Index* den EtherCAT-Slot. Über *Subindizes* haben Sie Zugriff auf den entsprechenden Parameter. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Subindex	Name	Тур	Attr.	Default- Wert	Bedeutung		
0x3100 0x313F	0x00	Parameter	Unsigned8	ro	Anzahl der Para- meter	Zugriff auf die Parameter von System SLIO Modulen. Es werden nur para- metrierbare Module gemappt.		
	0x01	Param1				rw		Modul-Parameterdaten
	0x02	Param2		rw		(siehe Modul-Beschreibung)		

Module, die nicht alarmfähig sind oder bei denen der Diagnose-Alarm deaktiviert ist, können bei falscher Parametrierung keine Alarme senden. Durch Abfrage der Diagnosedaten nach der Parametrierung können Sie eventuelle Parametrierfehler ermitteln. Zugriff auf das System SLIO > Zugriff auf Slave Information

4.4.5 Zugriff auf Slave Information

Slave Information lesen

Version Komponenten

IM 053EC

- Zur eindeutigen Identifizierung des Slaves IM 053EC werden einige Daten benötigt, die im ESI-File oder im sogenannten SII (Slave Information Interface) hinterlegt sind.
- Beim Zugriff auf die Slave Information des IM 053EC erfolgt die Adressierung über den Index (0x4100 + EtherCAT-Slot). Über Subindizes haben Sie Zugriff auf die entsprechenden Modul Information. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung		
0x4100:00	Module Informa- tion	U8	0	ro	8	Versionsangaben der Komponenten des IM 053EC		
0x4100:01	Module Name	VSTRG	16	ro	0	Modul Name		
0x4100:02	Module ID	U32	256	ro	0	Modul ID		
0x4100:03	Serial Number	VSTRG	288	ro	0	Seriennummer des Moduls		
0x4100:04	Product Version	VSTRG	448	ro	0	Produktversion des Moduls		
0x4100:05	Hardware Version	VSTRG	520	ro	0	Hardwareversion des Moduls		
0x4100:06	Software Version	VSTRG	536	ro	0	Softwareversion des Moduls		
0x4100:07	FPGA Version	U16	632	ro	0	FPGA Version		
0x4100:08	Mx-File	VSTRG	648	ro	0	Mx-Files des Kopplers		

🔅 "Erläuterung der Elemente" auf Seite 61

Hier haben Sie Zugriff auf die Versions-Angaben der Komponenten des IM 053EC.

4.4.6 Zugriff auf Diagnosedaten

Alarmfähige System SLIO Module senden Prozessalarm- bzw. Diagnosealarmdaten automatisch über das Emergency-Telegramm, sofern der Alarm über die Parametrierung aktiviert ist. Sie haben aber auch die Möglichkeit über SDO Diagnose-Daten anzufordern.

Alarm-Status

Der Alarm-Status enthält jeweils einen Zähler für Prozess- und Diagnosealarme zur Alarmsignalisierung. Diese Zähler sind Eingangsdaten des EtherCAT-Kopplers und werden zusammen mit den Prozessdaten übertragen.

Diagnostic

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF100:00	Diagnostic	U8	0	ro	3	
0xF100:01	Hardware Inter- rupt Counter	U32	16	ro	0x00000000	Zähler für Prozessalarm
0xF100:02	Diagnostic Inter- rupt Counter	U32	48	ro	0x00000000	Zähler für Diagnosealarm
0xF100:03	Diagnostic Module Status	U64	80	ro	0x00000000	64Bit Bereich, jedes Bit repräsentiert einen ausste- henden (aber quittierten) Diagnosealarm

🔅 "Erläuterung der Elemente" auf Seite 61

- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers wird der entsprechende Zähler auf 1 gesetzt bis Sie diesen entsprechend quittieren. Hierzu schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.
- Bei aktiviertem Auto-Acknowledge finden Sie hier die Anzahl an Prozess- bzw. Diagnosealarmen, welche seit dem letzten Alarm-Reset aufgetreten sind. Zum Rücksetzen des entsprechenden Zählers schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Es gilt folgende Index-Zuordnung:

- Schreiben auf 0x06 von Index 0x5000:
 - Rücksetzen von Prozessalarm Zähler
 - Schreiben auf 0x06 von Index 0x5002:
 - Rücksetzen von Diagnosealarm Zähler

Zugriff auf das System SLIO > Zugriff auf Diagnosedaten

Hardware Interrupt Data

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5000:00	Hardware Inter- rupt Data	U8	0	ro	6	Aktuelle Prozessalarmdaten
0x5000:01	Slot Number	U8	16	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm auf- getreten ist
0x5000:02	Hardware Inter- rupt Data 00	U8	24	ro	0x00	Prozessalarmdaten (siehe Modul-Beschreibung)
0x5000:03	Hardware Inter- rupt Data 01	U8	32	ro	0x00	
0x5000:04	Hardware Inter- rupt Data 02	U8	40	ro	0x00	
0x5000:05	Hardware Inter- rupt Data 03	U8	48	ro	0x00	
0x5000:06	Acknowledge	U8	56	rw	0x00	Schreiben eines beliebigen Werts setzt Prozess- alarmzähler zurück und quittiert gegebenenfalls Alarm.

🛭 🕸 "Erläuterung der Elemente" auf Seite 61

- Sofern über Objekt 0xF100 angezeigt wird, dass ein Prozessalarm aufgetreten ist, können Sie hier auf die aktuellen Prozessalarmdaten zugreifen. Die Belegung der Prozessalarmdaten finden Sie in der entsprechenden Modul-Beschreibung.
- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5000 den Hardware Interrupt Counter von Objekt 0xF100 zurücksetzen und den Prozessalarm quittieren.

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5002:00	Diagnostic Inter- rupt Data	U8	0	ro	6	Aktuelle Diagnosealarmdaten
0x5002:01	Slot Number	U8	16	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm auf- getreten ist.
0x5002:02	Diagnostic Data 00	U8	24	ro	0x00	Byte 1 4 der Diagnosedaten (siehe Modul- Beschreibung).
0x5002:03	Diagnostic Data 01	U8	32	ro	0x00	
0x5002:04	Diagnostic Data 02	U8	40	ro	0x00	
0x5002:05	Diagnostic Data 03	U8	48	ro	0x00	
0x5002:06	Acknowledge	U8	56	rw	0x00	Schreiben eines beliebigen Werts setzt Diagnose- alarmzähler zurück und quittiert gegebenenfalls Alarm.

Diagnostic Interrupt Data (Byte 1 ... 4)

♥ "Erläuterung der Elemente" auf Seite 61

Zugriff auf das System SLIO > Zugriff auf Diagnosedaten

- Sofern über Objekt 0xF100 angezeigt wird, dass ein Diagnosealarm aufgetreten ist, können Sie hier auf die ersten 4 Byte der Diagnosedaten zugreifen. Die Belegung der Diagnosedaten finden Sie in der entsprechenden Modul-Beschreibung.
- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5002 den Diagnostic Interrupt Counter von Objekt 0xF100 zurücksetzen und den Diagnosealarm quittieren.

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5005:00	Diagnostic Data	U8	0	ro	19	
0x5005:01	Slot number	U8	16	rw	0	Im Lesezugriff finden Sie hier den EtherCAT-Slot des Moduls, von dem die nachfolgend aufgeführten Diag- nose stammt. Durch Schreiben eines EtherCAT-Slots können Sie die Diagnosedaten eines beliebigen Moduls abfragen.
0x5005:02	Module error	U8	24	ro	0	Diagnosedatensatz des Moduls (siehe Modul-
0x5005:03	Module type	U8	32	ro	0	Beschreibung)
0x5005:04	Fix	U8	40	ro	0	
0x5005:05	Communication/ Process interrupt	U8	48	ro	0	
0x5005:06	Channel type	U8	56	ro	0	
0x5005:07	Number of diag- nostic bits	U8	64	ro	0	
0x5005:08	Number of chan- nels	U8	72	ro	0	
0x5005:09	Channel error	U8	80	ro	0	
0x5005:0A	Channel-specific error channel 0	U8	88	ro	0	
0x5005:0B	Channel-specific error channel 1	U8	96	ro	0	
0x5005:0C	Channel-specific error channel 2	U8	104	ro	0	
0x5005:0D	Channel-specific error channel 3	U8	112	ro	0	
0x5005:0E	Channel-specific error channel 4	U8	120	ro	0	
0x5005:0F	Channel-specific error channel 5	U8	128	ro	0	
0x5005:10	Channel-specific error channel 6	U8	136	ro	0	
0x5005:11	Channel-specific error channel 7	U8	144	ro	0	
0x5005:13	-	U8	152	ro	0	
0x5005:14	µs-Ticker	U32	160	ro	0	
M III I I I I I I I I I I I I I I I I I						

Diagnostic Data (Byte 1 ... n)

S "Erläuterung der Elemente" auf Seite 61

Mit diesem Objekt haben Sie Zugriff auf die gesamten Diagnosedaten eines Moduls. Sie können entweder die aktuellen Diagnosedaten abrufen oder die Diagnosedaten eines Moduls auf einem beliebigen EtherCAT-Slot.

Variables PDO-Mapping über SDO

4.5 Datentransfer über PDO und SDO Übersicht

 PDO
 PDO steht für Process Data Object. Mittels PDOs können Sie zur Laufzeit Prozessdaten übertragen. Hierbei adressieren Sie im Telegramm direkt die entsprechenden Ein- bzw. Ausgänge. Näheres zur Prozessdatenübertragung zur Laufzeit finden Sie in der Beschreibung zu Ihrem EtherCAT-Master.

SDO SDO steht für **S**ervice **D**ata **O**bject. Innerhalb eines SDO-Telegramms haben Sie Zugriff auf die Parameterdaten Ihres Systems. Hierbei adressieren Sie den gewünschten Parameter über Index und Subindex. Eine Übersicht der Objekte finden Sie im Objektverzeichnis.

4.6 Variables PDO-Mapping über SDO

Übersicht

Manche Module besitzen ein variables Prozessabbild. Sofern Ihr Master-System variables PDO-Mapping unterstützt, können Sie durch entsprechende Anpassung der PDO-Inhalte bei Modulen mit variablem Prozessabbild die Größe des Prozessabbilds vorgeben. Nähere Informationen zum PDO-Mapping finden Sie im Handbuch zu Ihrem Master-System.

Funktionsweise

- In der ESI-Datei ist definiert, welche Module über ein variables Prozessabbild verfügen. Werden Module mit variablem Prozessabbild verwendet, so werden automatisch Startup-Kommandos in die Startup-Liste des Masters eingefügt.
 - Diese Startup-Kommandos sind SDO-Schreibzugriffe auf die Bereiche 0x16yy und 0x1Ayy (PDO-Mapping), in denen die Struktur der Prozessdaten eines Moduls beschrieben ist.
 - Die Startup-Kommandos werden bei jedem Wechsel vom Zustand Pre-Op nach Safe-Op des entsprechenden EtherCAT-Kopplers durchgeführt.
 - In Ihrem EtherCAT-Master-System / EtherCAT-Konfigurator können Sie die PDO-Inhalte entfernen bzw. hinzufügen. Dabei werden automatisch die Startup-Kommandos angepasst.

 Bitte berücksichtigen Sie bei der Anpassung der PDO-Inhalte immer die Datenstruktur der E/A-Daten der jeweiligen Module! Informationen zur Datenstruktur der E/A-Daten eines Moduls finden Sie im zugehörigen System SLIO Handbuch.

- Damit die neue Konfiguration übernommen werden kann, ist das Master-System neu zu initialisieren, bzw. bei der Verwendung eines EtherCAT-Konfigurators kann die neue Konfiguration nun in den EtherCAT-Master geladen werden.
 - Beim Wechsel von Pre-Op nach Safe-Op werden die neuen Startup-Kommandos zum EtherCAT-Koppler übermittelt und damit das neue PDO-Mapping eingestellt.
- Der EtherCAT-Koppler konfiguriert das entsprechende Modul um und passt automatisch die Länge der Modulparameter im Objektverzeichnis 0x31yy an.

Die Anpassung des Prozessabbilds von Modulen mit variabler Prozessabbild-Größe sollte nicht über das Objekt 0x31yy erfolgen, da ansonsten nur die Länge im Modul umparametriert wird, EtherCAT-Koppler und Master aber mit der Standard-Länge arbeiten!

4.7 Objektverzeichnis

Objektübersicht

Index	Object Dictionary Area
0x0000 0x0FFF	Data Type Area
0x1000 0x1FFF	Communication Area
0x2000 0x5FFF	Manufacturer Specific Area
0x6000 0x6FFF	Input Area
0x7000 0x7FFF	Output Area
0x8000 0x8FFF	Configuration Area
0x9000 0x9FFF	Information Area
0xA000 0xAFFF	Diagnosis Area
0xB000 0xBFFF	Service Transfer Area
0xC000 0xEFFF	Reserved Area
0xF000 0xFFFF	Device Area

Bitte beachten Sie, dass die System SLIO Power- und Klemmen-Module keine Typ-Kennung besitzen. Diese können vom EtherCAT-Koppler nicht erkannt werden und werden somit bei der Auflistung bzw. Zuordnung der Steckplätze nicht berücksichtigt.

Im Weiteren werden die Steckplätze innerhalb von EtherCAT als EtherCAT-Slot bezeichnet. Die Zählung beginnt immer bei 0.

In dem nachfolgenden Beispiel ist der physikalische Steckplatz 2 von einem Klemmen-Modul (CM) belegt. Da das Klemmen-Modul keine Typ-Kennung besitzt, wird dieses vom EtherCAT-Koppler nicht erkannt. Somit wird in EtherCAT das nächste Modul auf EtherCAT-Slot 1 gemappt usw.

Erläuterung der Elemente	Index:Sub	 Index und Subindex
	Ux	- Datentyp UNSIGNEDx
	VSTRG	- Datentyp VISIBLE STRING
	Zugriff	- Lese-, Schreibzugriff (ro: nur Lesezugriff, rw: Lese- und Schreibzugriff)
	Default	- Default-Wert
	Offset	- Bitte beachten Sie den Offset

Device Type

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung			
0x1000:00	Device Type	U32	ro	0x00001389	0x00001389 steht für MDP			
♥ "Erläuterung der Elemente" auf Seite 61								

Error Register

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung
0x1001:00	Error Register	U8	ro	0	Error Register
					 Bit 0: Allgemeiner Fehler Ein nicht näher spezifizierter Fehler ist aufgetreten (Bit ist bei jeder Fehlermeldung gesetzt). Bit 1: Stromfehler Bit 2: Spannungsfehler Bit 3: Temperaturfehler Bit 4: Kommunikationsfehler Bit 5: Geräte spezifischer Fehler Bit 6: reserviert Bit 7: Herstellerspezifischer Fehler
& "Erläuterun	g der Elemente" auf Seite	e 61			

Device Name

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung			
0x1008:00	Device name	VSTRG	ro	053-1EC01	Name des Kopplers			

Hardware Version

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung			
0x1009:00	Hardware version	VSTRG	ro		Hardware Version des Kopplers			

Software Version

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung			
0x100A:00	Software version	VSTRG	ro		Software Version des Kopplers			
♥ "Erläuterung der Elemente" auf Seite 61								

Identity Object

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung		
0x1018:00	Identity object	U8	0	ro	4	Identity Objekt		
0x1018:01	Vendor ID	U32	16	ro	0x0000022B	Hersteller ID wird von der ETG eindeutig vergeben		
0x1018:02	Product code	U32	48	ro	0x0531EC01	Produktcode wird eindeutig vom Hersteller zuge- wiesen		
0x1018:03	Revision number	U32	80	ro	1	Die Revisionsnummer wird vom Hersteller eindeutig zugewiesen		
0x1018:04	Serial number	U32	112	ro	0	Seriennummer, die vom Hersteller eindeutig für diesen Koppler vergeben wird		
♥ "Erläuterung der Elemente" auf Seite 61								

Error Setting

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x10F1:00		U8	0	ro	0x0002	Error Setting
0x10F1:01		U32	16	rw	0x0001	 Local Error Reaction 0 = PDO-Zustand: Slave ändert den Wert im PDO Zustandsbit (entweder im PDO Para- meter oder im Teil der Prozessdaten). Slave bleibt im Zustand Op. 1 = Disable SyncManager (Ausgang) vom PDI und wechselt in Zustand ErrSafeOp.
0x10F1:02		U16	48	rw	0x0004	 Sync Error Counter Limit Begrenzung gesetzt durch den Master, wenn der Slave den EtherCAT-Zustand in Safe-Op mit AL Statuscode 0x1A ändert. Der Slave setzt einen internen Fehlerzähler zurück, wenn er synchronisiert wird und bestätigt den Zustandswechsel von Safe-Op zu Op.
"Erläuterung	g der Elemente" auf	Seite 61				

Diagnosis History

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x10F3:00	Diagnosis History	U8	0	ro	0xFF	Historie der Diagnose
0x10F3:01	Maximum Messages	U8	16	ro	0xFA	Maximum Meldungen
0x10F3:02	Newest Message	U8	24	ro	0	Neueste Meldung
0x10F3:03	Newest Acknowledged Message	U8	32	rw	0	Neueste bestätigte Meldung

Einsatz

Objektverzeichnis

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x10F3:04	New Message Avai- lable	Bool	40	ro	0	 Neue Meldung verfügbar Schreiben: 0: neueste Nachricht wurde gelesen 1: neueste Nachricht wurde nicht gelesen Bestätigte Meldung: 0: keine Diagnosemeldungen 1: Diagnosemeldungen, die quittiert werden können stehen zur Verfügung
0x10F3:05	Flags	U16	48	rw	0	Hilfsmerker
0x10F3:06	Diagnosis message	OCTETST RING		ro	0	Diagnose Meldung
0x10F3:255	Diagnosis message	OCTETST RING		ro	0	Diagnose Meldung

🔄 "Erläuterung der Elemente" auf Seite 61

In der *Diagnosis History* werden sowohl die aufgetretenen Diagnose- und Prozessalarme, sowie Informationen über Statusänderungen als auch über EtherCAT-spezifische Fehlermeldungen chronologisch eingetragen.

Output Mapping Modules

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1600 0x163F:00	RxPDO Map	U8	0	ro/rw*	Anzahl der Ausgänge auf diesem Steckplatz	Eintrag gibt es nur auf Steckplätzen mit Ausgabe- Modulen.
0x1600 0x163F:01	Output Mapping	U32	16	ro/rw*		Bit 70: Länge der zugeordneten Objekte in Bits
0x1600 0x163F:02	Output Mapping	U32		ro/rw*		 Bit 158: Subindex des zugeordneten Objekts Bit 3116: Index des zugeordneten Objekte
0x1600 0x163F:						Beispiel: 0x7000:01, 1 > auf Slot 0 ist der erste Ausgang 1 Bit lang.
🖏 "Erläuterund	g der Elemente" auf S	Seite 61				

*) rw nur bei Ausgabe-Modulen mit variabler Prozessausgabegröße

Input Mapping Modules

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1A00 0x1A3F:00	TxPDO Map	U8	0	ro/rw*	Anzahl der Eingänge auf diesem Steckplatz	Eintrag gibt es nur auf Steckplätzen mit Eingabe- Modulen.
0x1A00 0x1A3F:01	Input Mapping	U32	16	ro/rw*		Bit 70: Länge der zugeordneten Objekte in Bits

Objektverzeichnis

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1A00 0x1A3F:02	Input Mapping	U32		ro/rw*		 Bit 158: Subindex des zugeordneten Objekts Dit 2110: Index des zugeordneten Objekts
0x1A00 0x1A3F:						Bit 3116: Index des Zugeordneten Objekts Beispiel: 0x6000:01, 8 > auf Slot 0 ist der erste Eingang 8 Bit lang.

"Erläuterung der Elemente" auf Seite 61

*) rw nur bei Eingabe-Modulen mit variabler Prozesseingabegröße

Systembedingt sollten Sie das "Input/Output Mapping Modules" im Projektiertool nicht verändern, da es sonst zu Fehlern im Prozessabbild kommen kann!

Input Mapping Coupler

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1B00:00	Status PDO Map- ping	U8	0	ro	4	Status des PDO Mappings
						Bit 70: Länge der Objekte in Bits
						Bit 158: Subindex des gemappten Objekts
						Bit 3116: Index des gemappten Objekts
0x1B00:01	Input Mapping 01	U32	16	ro	0xF1000120	Mapping für den Prozessalarm.
0x1B00:02	Input Mapping 02	U32	48	ro	0xF1000220	Mapping für den Diagnosealarm.
0x1B00:03	Input Mapping 03	U32	80	ro	0xF1000340	Mapping für den Diagnose Modul Status.
0x1B00:04	Input Mapping 04	U32	112	ro	0x10F30401	Mapping für neue Meldung verfügbar.

🖏 "Erläuterung der Elemente" auf Seite 61

SyncManager Type

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C00:00	SyncManager Type	U8	0	ro	4	Sync Manager-Kommunikationstyp
0x1C00:01	SyncManager 1	U8	16	ro	1	1: Mailbox empfangen (Master an Slave)
0x1C00:02	SyncManager 2	U8	24	ro	2	2: Mailbox senden (Slave an Master)
0x1C00:03	SyncManager 3	U8	32	ro	3	3: Prozessdatenausgabe
0x1C00:04	SyncManager 4	U8	40	ro	4	4: Prozessdateneingabe
🖔 "Erläuterun	ng der Elemente" auf	Seite 61				

Objektverzeichnis

RxPDO Assign

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C12:00	RxPDO Assign	U8	0	ro	Anzahl der Module mit Prozessaus- gangsdaten	Sync Manager 2 PDO Zuordnung (0x16yy)
0x1C12:01	RxPDO Mapping 1	U16	16	ro		PDO Mapping Objektindex des zugeordneten PDOs
0x1C12:		U16		ro		
0x1C12:40	RxPDO Mapping 64	U16		ro		
M. "Erläuterur	na der Elemente" auf	Soito 61				

🗞 "Erläuterung der Elemente" auf Seite 61

TxPDO Assign

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C13:00	TxPDO Assign	U8	0	ro	Anzahl der Eingangs- PDOs von Koppler und Modulen	Sync Manager 3 PDO Zuordnung
0x1C13:01	TxPDO Mapping 1	U16	16	ro		PDO Mapping Objektindex des zugeordneten PDOs (0x1Ayy)
0x1C13:02	TxPDO Mapping 2	U16		ro		
0x1C13:		U16		ro		
0x1C13:40	TxPDO Mapping 64	U16		ro		
♥ "Erläuterun]	ng der Elemente" auf	Seite 61				

Der EtherCAT-Koppler besitzt auch Prozesseingangsdaten, welche den Alarmstatus wiedergeben. Daher ist an erster Stelle das Mapping 0x1AFF für die Eingangs-PDOs des Kopplers.

SM Output Parameter

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C32:00	SM output para- meter	U8	0	ro	32	
0x1C32:01	Synchronization Type	U16	16	rw		 0x00: Free Run (nicht synchronisiert) 0x01: Synchronous - synchron mit Sync Manager Event 0x02: DC Sync0 - synchron mit Sync0 Event 0x03: DC Sync1 - synchron mit Sync1 Event
0x1C32:02	Cycle time	U32	32	rw		 Free Run: Zeit zwischen zwei lokalen Timer- Ereignissen in ns Free Run: Zeit zwischen zwei lokalen Timer- Ereignissen in ns Synchrones SM2-Ereignis: Minimale Zeit zwi- schen zwei SM2-Ereignissen in ns DC Sync0: Sync0 Cycle Time (Register 0x9A3-0x9A0) in ns
0x1C32:03	Shift time	U32	64	ro		 Zeit zwischen zugehörigem Ereignis und zugehöriger Aktion (gibt gültige Hardware aus) Verschiebung der Ausgabe gleich oder größer als 0x1C32:09
0x1C32:04	Synchronization Types supported	U16	96	ro		
0x1C32:05	Minimum cycle time	U32	112	ro		 Minimum cycle time unterstützt vom Slave (maximale Dauer des lokalen Zyklus) in ns Es kann notwendig sein, die Messung der dyna- mischen Zykluszeit Sl04, Bit 14 und Sl08, Bit 0 zu starten, um einen gültigen Wert zu erhalten; wird im synchronen oder DC-Modus verwendet
0x1C32:06	Calc and Copy Time	U32	144	ro		Zeit, die der Anwendungscontroller benötigt, um die Prozessdaten vom Sync Manager in den lokalen Speicher zu kopieren und erforderlichenfalls Berech- nungen durchzuführen, bevor die Daten an den Pro- zess gesendet werden
0x1C32:07	Minimum Delay Time	U32	176	ro		Nur wichtig für DC Sync0/1 (Synchronisationstyp = 0x02 oder 0x03): Minimale Hardware-Verzögerungs- zeit des Slaves. Aufgrund der Softwaresynchronisa- tion kann es einen Abstand zwischen der minimalen und der maximalen Verzögerungszeit geben
0x1C32:08	Get Cycle Time	U16	208	ro		 Bit 0: 0: Messung der lokalen Zykluszeit wurde gestoppt 1: Messung der lokalen Zykluszeit gestarted Wenn sie erneut geschrieben werden, werden die gemessenen Werte zurückgesetzt. Wird in Synchron oder (DC-Modus mit variabler Zykluszeit) verwendet. Bit 1:

Einsatz

Objektverzeichnis

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C32:09	Delay Time	U32	224	ro		Nur wichtig für DC Sync0/1 (Synchronisationstyp = 0x02 oder 0x03): Hardware-Verzögerungszeit des Slaves. Zeit vom Empfang des Triggers (Sync0 oder Sync1 Event), um Ausgangswerte zu der Zeit zu steuern, bis sie in dem Prozess gültig werden (z.B. verfüg- basse elektrisches Signel)
						bares elektrisches Signal).
0x1C32:10	Sync0 Cycle Time	U32	256	rw		Nur wichtig für DC Sync0 (Synchronisationsart = 0x03) und unterlagerte lokale Zyklen: Zeit zwischen zwei Sync0-Signalen, wenn die Applikation <i>Sync0 Cycle Time</i> benötigt.
0x1C32:11	SM-Event Missed	U16	288	ro		 Dieser Fehlerzähler wird inkrementiert, wenn die Anwendung ein SM-Ereignis erwartet, aber nicht rechtzeitig empfängt und infolgedessen die Daten nicht mehr kopiert werden können. Verwendet in DC mode.
0x1C32:12	Cycle Time Too Small	U16	304	ro		 Dieser Fehlerzähler wird inkrementiert, wenn die Zykluszeit zu klein ist, so dass der lokale Zyklus nicht abgeschlossen werden kann und Eingabe- daten nicht vor dem nächsten SM-Ereignis bereitgestellt werden können. Verwendet in Synchronous or DC Mode.
0x1C32:13	Shift Time Too Short	U16	320	ro		 Dieser Fehlerzähler wird inkrementiert, wenn der zeitliche Abstand zwischen dem Trigger (Sync0) und den gültigen Ausgängen aufgrund einer zu kurzen Schaltzeit oder Sync1-Zykluszeit zu kurz ist. Verwendet in DC Mode.
0x1C32:14	RxPDO Toggle Failed	U16	336	ro		Dieser Fehlerzähler wird inkrementiert, wenn der Slave den RxPDO-Toggle unterstützt und keine neuen RxPDO-Daten vom Master empfängt (RxPDO Toggle auf TRUE gesetzt).
0x1C32:15	Minimum Cycle Distance in ns	U32	352	ro		Wird in Verbindung mit SI 16 verwendet, um den Jitter zwischen zwei SM-Ereignissen zu überwachen
0x1C32:16	Maximum Cycle Distance in ns	U32	384	ro		Wird in Verbindung mit SI 15 verwendet, um den Jitter zwischen zwei SM-Ereignissen zu überwachen
0x1C32:17	Minimum SM SYNC Distance in ns	U32	416	ro		Wird in Verbindung mit SI 18 verwendet, um den Jitter zwischen dem SM-Ereignis und dem SYNC0- Ereignis im DC-SYNC0-Modus zu überwachen
0x1C32:18	Maximum SM SYNC Distance in ns	U32	448	ro		Wird in Verbindung mit SI 17 verwendet, um den Jitter zwischen dem SM-Ereignis und dem SYNC0- Ereignis im DC-SYNC0-Modus zu überwachen
0x1C32:32	Sync Error	BOOL	480	ro		 Wird unterstützt, wenn SM-Ereignis <i>Missed</i> oder <i>Shift Time Too Short</i> ist Abbildbar in TxPDO 0: Kein Synchronisationsfehler oder Sync-Fehler wird nicht unterstützt 1: Synchronisationsfehler
"Erläuterun	g der Elemente" auf	Seite 61				

SM Input Parameter

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C33:00	SM input para- meter	U8	0	ro	32	
0x1C33:01	Synchronization Type	U16	16	rw		 0x00: Free Run (nicht synchronisiert) 0x01: Synchronous with SM3 Event 0x02: DC Sync0 – Synchron mit Sync0 Event 0x03: DC Sync1 – Synchron mit Sync1 Event 0x22: Synchron mit SM2 Event
0x1C33:02	Cycle time	U32	32	rw		 Free Run: Zeit zwischen zwei lokalen Timer- Ereignissen in ns Free Run: Zeit zwischen zwei lokalen Timer- Ereignissen in ns Synchrones SM2-Ereignis: Minimale Zeit zwi- schen zwei SM2-Ereignissen in ns DC Sync0: Sync0 Zykluszeit (Register 0x9A3-0x9A0) in ns
0x1C33:03	Shift time	U32	64	ro		 Zeit zwischen zugehörigem Ereignis und zugehöriger Aktion (Eingaben von der Hardware zwischengespeichert) Verschiebung des Input Latch gleich oder größer als 0x1C33:09
0x1C33:04	Synchronization Types supported	U16	96	ro		
0x1C33:05	Minimum cycle time	U32	112	ro		 Minimum cycle time unterstützt vom Slave (maximale Dauer des lokalen Zyklus) in ns Es kann notwendig sein, die Messung der dyna- mischen Zykluszeit Sl04, Bit 14 und Sl08, Bit 0 zu starten, um einen gültigen Wert zu erhalten. Verwendet in Synchronous oder DC Mode
0x1C33:06	Calc and Copy Time	U32	144	ro		Zeit in ns, die der Anwendungscontroller benötigt, um bei Bedarf Berechnungen mit den Eingabewerten auszuführen und die Prozessdaten aus dem lokalen Speicher in den Sync Manager zu kopieren, bevor die Daten für EtherCAT verfügbar sind.
0x1C33:07		U32	176	ro		reserviert
0x1C33:08	Get Cycle Time	U16	208	ro		 Bit 0: 0: Messung der lokalen Zykluszeit wurde gestoppt 1: Messung der lokalen Zykluszeit wurde gestarted Wenn sie erneut geschrieben werden, werden die gemessenen Werte zurückgesetzt. Wird in Synchron oder (DC-Modus mit variabler Zykluszeit) verwendet Bit 1: 0: reserviert 1: Fehlerzähler zurück setzen Bit 15 2: reserviert
0x1C33:09	Delay Time	U32	224	ro		 Nur wichtig für DC Sync1 (Synchronisationstyp = 3), wenn der Input Latch vom Sync1-Event gestartet wird. Hardware-Verzögerungszeit des Slaves. Verwendet in DC mode

Einsatz

Objektverzeichnis

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x1C33:10	Sync0 Cycle Time	U32	256	rw		Nur wichtig für DC Sync0 (Synchronisationsart = 0x03) und unterlagerter lokaler Zyklen: Zeit zwischen zwei Sync0-Signalen, wenn von der Applikation eine feste Sync0-Zykluszeit benötigt wird.
0x1C33:11	SM-Event Missed	U16	288	ro		 Dieser Fehlerzähler wird inkrementiert, wenn die Anwendung ein SM-Ereignis erwartet, aber nicht rechtzeitig empfängt und infolgedessen die Daten nicht mehr kopiert werden können. Verwendet in DC mode.
0x1C33:12	Cycle Time Too Small	U16	304	ro		 Dieser Fehlerzähler wird inkrementiert, wenn die Zykluszeit zu klein ist, so dass der lokale Zyklus nicht abgeschlossen werden kann und Eingabe- daten nicht vor dem nächsten SM-Ereignis bereitgestellt werden können. Verwendet in Synchronous oder DC Mode.
0x1C33:13	Shift Time Too Short	U16	320	ro		 Shift Time Too Short Dieser Fehlerzähler wird inkrementiert, wenn der Zeitabstand zwischen dem Trigger (Sync0) und den gültigen Ausgängen wegen einer zu kurzen Shift Time oder Sync1 Cycle Time. Verwendet in DC Mode.
0x1C33:14			336			reserviert
0x1C33:18			448			reserviert
0x1C33:32	Sync Error	BOOL	480	ro		 Wird unterstützt, wenn SM-Ereignis <i>Missed</i> oder <i>Shift Time Too Short</i> unterstützt wird Mappable in TxPDO 0: <i>Synchronization Error</i> oder <i>Sync Error</i> wird nicht unterstützt 1: <i>Synchronization Error</i>

🗞 "Erläuterung der Elemente" auf Seite 61

Command

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung		
0x2000:00	Command	U8	0	ro	3	Kommando Objekt (reserviert)		
♥ "Erläuterung der Elemente" auf Seite 61								

Parameter SLIO EtherCAT Coupler

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x3000:00	Coupler para- meter	U8	0	ro	3	Parameter SLIO EtherCAT-Koppler
0x3000:01	Auto-Acknow- ledge	U8	16	rw	1	Gibt den Modus an, wie der EtherCAT-Koppler auf Alarme reagieren soll. *
0x3000:02	reserviert	U8	24	rw	0	reserviert
0x3000:03	Default Values	U8	32	rw	0	Default Values Ox00: deaktiviert Ox01: aktiviert

🔄 "Erläuterung der Elemente" auf Seite 61

*) Hier können Sie den EtherCAT-Koppler parametrieren. Bei diesem Objekt geht der Schreibzugriff nur, wenn sich der EtherCAT-Koppler im Zustand PreOp oder SafeOp befindet. Im Op wird der Schreibzugriff verweigert.

- Mit Auto-Acknowledge = 0 des EtherCAT-Kopplers wird der entsprechende Z\u00e4hler pro Modul um 1 erh\u00f6ht. Sobald Sie den Alarm quittieren, wird der Z\u00e4hler wieder um 1 vermindert. Steht bei mehreren Modulen ein Alarm an, so wird durch den SDO-Schreibzugriff immer der aktuellste Alarm quittiert (Last In - First Out).
- Mit Auto-Acknowledge = 1 wird jeder Alarm vom EtherCAT-Koppler selbständig quittiert. In diesem Modus werden Diagnosedaten von neuen Alarmen überschrieben. Per Default ist Auto-Acknowledge = 1. Für den Dauereinsatz sollte Auto-Acknowledge aktiviert sein.

Parameter SLIO Module

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x3100 0x313F:00	Parameter	U8	0	ro	Anzahl der Parameter	Parameter eines System SLIO Moduls
0x3100 0x313F:01	Param1	U8	16	rw		
0x3100 0x313F:02	Param2	U8	32	rw		
0x3100 0x313F:						
M						

🔅 "Erläuterung der Elemente" auf Seite 61

Mit diesem Objekt haben Sie Zugriff auf die Parameter eines System SLIO Moduls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den Index. Über Subindizes haben Sie Zugriff auf den entsprechenden Parameter. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung. Auch hier gilt, dass Power- und Klemmen-Module vom EtherCAT-Koppler nicht erkannt und somit bei der Auflistung bzw. Zuordnung der Steckplätze nicht berücksichtigt werden.

Sofern das Modul Parameter besitzt gilt folgendes

- Index 0x3100: Zugriff auf EtherCAT-Slot 0
- Index 0x3101: Zugriff auf EtherCAT-Slot 1
- · · · ·
- Index 0x313F: Zugriff auf EtherCAT-Slot 64

In dem nachfolgenden Beispiel haben Sie über Index 0x3102 Zugriff auf die Parameter des Moduls auf dem physikalischen Steckplatz 4.

Physikalische Steckplatz-Nr.	1	2	3	4			
Modul	DI	СМ	DO	AI			
Index	0x3100*	-	0x3101*	0x3102			
EtherCAT-Slot 0 - 1 2							
*) Dieser Eintrag wird nicht aufgeführt, da das Modul keine Parameter besitzt.							

Clear SLIO Counter

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung	
0x4000:00	Clear SLIO Counter	U8	0	ro	2	Schreiben eines beliebigen Wertes auf den ent- sprechenden Subindex löscht den Zähler.	
0x4000:01	Clear Master Counter	U8	16	rw	0	 Master Counter Objekt 0x4001 	
0x4000:02	Clear Module Counter	U8	24	rw	0	 MDL und NDL Counter Objekt 0x4002 und 0x4003 	
∜ "Erläuterung der Elemente" auf Seite 61							
Master Counter

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x4001:00	Master Counter	U8	0	ro	14	Fehlerzähler des SLIO Master
0x4001:01	Expected Length Error	U16	16	ro	0	
0x4001:02	TimeOut Error	U16	32	ro	0	
0x4001:03	StopBit Error	U16	48	ro	0	
0x4001:04	FCS Error	U16	64	ro	0	
0x4001:05	Telegram Length Error	U16	80	ro	0	
0x4001:06	Telegram Type Error	U16	96	ro	0	
0x4001:07	Alarm Retry Error	U16	112	ro	0	
0x4001:08	Bus Idle Time Error	U16	128	ro	0	
0x4001:09	Wrong Node Add- ress	U16	144	ro	0	
0x4001:0A	Telegram Valid	U16	160	ro	0	
0x4001:0B	Master Load	U16	176	ro	0	
0x4001:0C	One Telegram Retry Counter	U16	192	ro	0	
0x4001:0D	Two Telegram Retry Counter	U16	208	ro	0	
0x4001:0E	Three or More Telegram Retry Counter	U16	224	ro	0	
& "Erläuterun	a der Elemente" auf	Seite 61				

Module MDL Counter

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung			
0x4002:00	Module MDL Counter	U8	0	ro	64	Master Data Line Counter			
0x4002:01	Slot 1	U16	16	ro	0	Steckplatz 1			
0x4002:02	Slot 2	U16	32	ro	0	Steckplatz 2			
0x4002:		U16		ro	0				
0x4002:40	Slot 64	U16		ro	0	Steckplatz 64			
🖔 "Erläuterun	[©] "Erläuterung der Elemente" auf Seite 61								

Module NDL Counter

Name	Тур	Offset	Zugriff	Default	Beschreibung
Module NDL Counter	U8	0	ro	64	Node Data Line Counter
Slot 1	U16	16	ro	0	Steckplatz 1
Slot 2	U16	32	ro	0	Steckplatz 2
	U16		ro	0	
Slot 64	U16		ro	0	Steckplatz 64
	Jame Aodule NDL Counter Slot 1 Slot 2 Slot 64	JameTypModule NDL CounterU8Slot 1U16Slot 2U16U16Slot 64U16	IameTypOffsetModule NDL CounterU80Slot 1U1616Slot 2U1632U16Slot 64U16	JameTypOffsetZugriffModule NDL CounterU80roSlot 1U1616roSlot 2U1632roU16roSlot 64U16roro	JameTypOffsetZugriffDefaultModule NDL CounterU80ro64Slot 1U1616ro0Slot 2U1632ro0U16ro0Slot 4U16ro0

🔅 "Erläuterung der Elemente" auf Seite 61

Version Komponenten IM 053EC

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x4100:00	Module Informa- tion	U8	0	ro	8	Versionsangaben der Komponenten des IM 053EC
0x4100:01	Module Name	VSTRG	16	ro	0	Modul Name
0x4100:02	Module ID	U32	256	ro	0	Modul ID
0x4100:03	Serial Number	VSTRG	288	ro	0	Seriennummer des Moduls
0x4100:04	Product Version	VSTRG	448	ro	0	Produktversion des Moduls
0x4100:05	Hardware Version	VSTRG	520	ro	0	Hardwareversion des Moduls
0x4100:06	Software Version	VSTRG	536	ro	0	Softwareversion des Moduls
0x4100:07	FPGA Version	U16	632	ro	0	FPGA Version
0x4100:08	Mx-File	VSTRG	648	ro	0	Mx-Files des Kopplers

🛭 🕸 "Erläuterung der Elemente" auf Seite 61

Hier haben Sie Zugriff auf die Versions-Angaben der Komponenten des IM 053EC.

Serial Number Modules

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung
0x4103:00	Module Serial Number	U8	ro		Seriennummern der Module
0x4103:01	Slot 1	VSTRG	ro		EtherCAT-Slot
0x4103:02	Slot 2	VSTRG	ro		
0x4103:		VSTRG	ro		
0x4103:40	Slot 64	VSTRG	ro		

🗞 "Erläuterung der Elemente" auf Seite 61

Mit diesem Objekt haben Sie Zugriff auf die Seriennummer eines SLIO-Moduls auf dem EtherCAT-Slot.

Firmware Version Modules

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung
0x4105:00	Module Firmware Ver- sion	U8	ro		Firmwareversionen der Module
0x4105:01	Slot 1	U32	ro		EtherCAT-Slot
0x4105:02	Slot 2	U32	ro		
0x4105:		U32	ro		
0x4105:40	Slot 64	U32	ro		

🔅 "Erläuterung der Elemente" auf Seite 61

Über dieses Objekt haben Sie Zugriff auf die Firmware-Version des SLIO-Moduls auf dem EtherCAT-Slot.

FPGA Version Modules

Index:Sub	Name	Тур	Zugriff	Default	Beschreibung
0x4107:00	Module FPGA Version	U8	ro		FPGA-Versionen der Module
0x4107:01	Slot 1	U16	ro		EtherCAT-Slot
0x4107:02	Slot 2	U16	ro		
0x4107:		U16	ro		
0x4107:40	Slot 64	U16	ro		

🔅 "Erläuterung der Elemente" auf Seite 61

Mit diesem Objekt können Sie die FPGA-Version des SLIO-Moduls auf dem EtherCAT-Slot ermitteln.

Hardware Interrupt Data

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5000:00	Hardware Inter- rupt Data	U8	0	ro	6	Aktuelle Prozessalarmdaten
0x5000:01	Slot Number	U8	16	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm auf- getreten ist
0x5000:02	Hardware Inter- rupt Data 00	U8	24	ro	0x00	Prozessalarmdaten (siehe Modul-Beschreibung)
0x5000:03	Hardware Inter- rupt Data 01	U8	32	ro	0x00	
0x5000:04	Hardware Inter- rupt Data 02	U8	40	ro	0x00	
0x5000:05	Hardware Inter- rupt Data 03	U8	48	ro	0x00	
0x5000:06	Acknowledge	U8	56	rw	0x00	Schreiben eines beliebigen Werts setzt Prozess- alarmzähler zurück und quittiert gegebenenfalls Alarm.

🖏 "Erläuterung der Elemente" auf Seite 61

- Sofern über Objekt 0xF100 angezeigt wird, dass ein Prozessalarm aufgetreten ist, können Sie hier auf die aktuellen Prozessalarmdaten zugreifen. Die Belegung der Prozessalarmdaten finden Sie in der entsprechenden Modul-Beschreibung.
- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5000 den Hardware Interrupt Counter von Objekt 0xF100 zurücksetzen und den Prozessalarm quittieren.

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5002:00	Diagnostic Inter- rupt Data	U8	0	ro	6	Aktuelle Diagnosealarmdaten
0x5002:01	Slot Number	U8	16	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm auf- getreten ist.
0x5002:02	Diagnostic Data 00	U8	24	ro	0x00	Byte 1 4 der Diagnosedaten (siehe Modul- Beschreibung).
0x5002:03	Diagnostic Data 01	U8	32	ro	0x00	
0x5002:04	Diagnostic Data 02	U8	40	ro	0x00	
0x5002:05	Diagnostic Data 03	U8	48	ro	0x00	
0x5002:06	Acknowledge	U8	56	rw	0x00	Schreiben eines beliebigen Werts setzt Diagnose- alarmzähler zurück und quittiert gegebenenfalls Alarm.

Diagnostic Interrupt Data (Byte 1 ... 4)

🔄 "Erläuterung der Elemente" auf Seite 61

- Sofern über Objekt 0xF100 angezeigt wird, dass ein Diagnosealarm aufgetreten ist, können Sie hier auf die ersten 4 Byte der Diagnosedaten zugreifen. Die Belegung der Diagnosedaten finden Sie in der entsprechenden Modul-Beschreibung.
- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5002 den Diagnostic Interrupt Counter von Objekt 0xF100 zurücksetzen und den Diagnosealarm quittieren.

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x5005:00	Diagnostic Data	U8	0	ro	19	
0x5005:01	Slot number	U8	16	rw	0	Im Lesezugriff finden Sie hier den EtherCAT-Slot des Moduls, von dem die nachfolgend aufgeführten Diag- nose stammt. Durch Schreiben eines EtherCAT-Slots können Sie die Diagnosedaten eines beliebigen Moduls abfragen.
0x5005:02	Module error	U8	24	ro	0	Diagnosedatensatz des Moduls (siehe Modul-
0x5005:03	Module type	U8	32	ro	0	Beschreibung)
0x5005:04	Fix	U8	40	ro	0	
0x5005:05	Communication/ Process interrupt	U8	48	ro	0	
0x5005:06	Channel type	U8	56	ro	0	
0x5005:07	Number of diag- nostic bits	U8	64	ro	0	
0x5005:08	Number of chan- nels	U8	72	ro	0	
0x5005:09	Channel error	U8	80	ro	0	
0x5005:0A	Channel-specific error channel 0	U8	88	ro	0	
0x5005:0B	Channel-specific error channel 1	U8	96	ro	0	
0x5005:0C	Channel-specific error channel 2	U8	104	ro	0	
0x5005:0D	Channel-specific error channel 3	U8	112	ro	0	
0x5005:0E	Channel-specific error channel 4	U8	120	ro	0	
0x5005:0F	Channel-specific error channel 5	U8	128	ro	0	
0x5005:10	Channel-specific error channel 6	U8	136	ro	0	
0x5005:11	Channel-specific error channel 7	U8	144	ro	0	
0x5005:13	-	U8	152	ro	0	
0x5005:14	µs-Ticker	U32	160	ro	0	
M						

Diagnostic Data (Byte 1 ... n)

Mit diesem Objekt haben Sie Zugriff auf die gesamten Diagnosedaten eines Moduls. Sie können entweder die aktuellen Diagnosedaten abrufen oder die Diagnosedaten eines Moduls auf einem beliebigen EtherCAT-Slot.

Read Input Data

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x6000 0x603F:00	Input Data	U8	0	ro	60	Anzahl der Subindizes der Eingabe-Daten für den entsprechenden EtherCAT-Slot.
0x6000 0x603F:01		U32	16	ro		Eingabe-Daten (siehe Modul-Beschreibung)
0x6000 0x603F:02		U32		ro		
0x6000 0x603F:				ro		

🔅 "Erläuterung der Elemente" auf Seite 61

Über dieses Objekt haben Sie Zugriff auf den Eingabe-Bereich eines System SLIO Moduls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den Index (0x6000 + EtherCAT-Slot). Über Subindizes haben Sie Zugriff auf die entsprechenden Eingabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Read Output Data

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0x7000 0x703F:00	Output Data	U8	0	ro	60	Anzahl der Subindizes der Ausgabe-Daten für den entsprechenden EtherCat-Slot.
0x7000 0x703F:01		U32	16	ro		Ausgabe-Daten (siehe Modul-Beschreibung)
0x7000 0x703F:02		U32		ro		
0x7000 0x703F:				ro		

♦ "Erläuterung der Elemente" auf Seite 61

Mit diesem Objekt haben Sie lesenden Zugriff auf den Ausgabe-Bereich eines System SLIO Moduls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den Index (0x7000 + EtherCAT-Slot). Über Subindizes haben Sie lesenden Zugriff auf die entsprechenden Ausgabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Informationen, wie Sie Ausgabedaten schreiben, finden Sie in der Beschreibung zu Ihrem EtherCAT-Master.

Modular Device Profile

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF000:00	Modular Device Profile	U8	0	ro	4	Enthält Informationen zur Interpretation der Funktionen der Module in den Objekten
0xF000:01	Index Distance	U16	16	ro	1	Index Abstand zwischen zwei Modulen
0xF000:02	Maximum Number of Modules	U16	32	ro	0x40 (64)	Maximale Anzahl von Modulen
0xF000:03	General configu- ration	U32	48	ro	0	
0xF000:04	General informa- tion	U32	80	ro	0	
"Erläuterun	ig der Elemente" auf	Seite 61				

Module Profile List

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF010:00	Module Profile List	U8	0	ro	0x40 (64)	Modulkennungen der Module
0xF010:01	Subindex 001	U32	16	ro	0	Bit 150: Prominiormationen des Moduls
0xF010:02	Subindex 002	U32	48	ro	0	des Moduls
0xF010:		U32		ro		
0xF010:40	Subindex 064	U32		ro	0	
"Erläuterun	g der Elemente" auf	Seite 61				

Configured Module Ident List

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF030:00	Configured Module Ident List	U8	0	rw	0x40 (64)	Modulkennungen der konfigurierten Module
0xF030:01	Subindex 001	U32	16	rw	0	
0xF030:02	Subindex 002	U32	48	rw	0	
0xF030:		U32		rw		
0xF030:40	Subindex 064	U32		rw	0	

🛭 🕸 "Erläuterung der Elemente" auf Seite 61

- Beim Beschreiben eines Subindex wird der eingetragene Wert mit der Modulkennung auf dem gleichen Subindex von Index 0xF050 verglichen. So kann die Konfiguration überprüft werden.
- Da einige Konfigurations-Tools diesen Index nicht automatisch beschreiben, können manche Konfigurationsfehler nicht erkannt werden.

Detected Address List

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF040:00	Detected Address List	U8	0	ro	0x40 (64)	Adressen aller Module, die vom Koppler erkannt werden.
0xF040:01	Subindex 001	U16	16	ro		
0xF040:02	Subindex 002	U16	32	ro		
0xF040:		U16		ro		
0xF040:40	Subindex 064	U16		ro		
🌣 "Erläuterun	g der Elemente" auf	Seite 61				

Detected Module List

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF050:00	Detected Module List	U8	0	ro	0x40 (64)	Modulkennungen aller vom Koppler erkannten Module.
0xF050:01	Subindex 001	U32	16	ro		
0xF050:02	Subindex 002	U32	48	ro		
0xF050:		U32		ro		
0xF050:40	Subindex 064	U32		ro		
🖔 "Erläuterun	a der Elemente" auf	Seite 61				

Diagnostic

Index:Sub	Name	Тур	Offset	Zugriff	Default	Beschreibung
0xF100:00	Diagnostic	U8	0	ro	3	
0xF100:01	Hardware Inter- rupt Counter	U32	16	ro	0x00000000	Zähler für Prozessalarm
0xF100:02	Diagnostic Inter- rupt Counter	U32	48	ro	0x00000000	Zähler für Diagnosealarm
0xF100:03	Diagnostic Module Status	U64	80	ro	0x00000000	64Bit Bereich, jedes Bit repräsentiert einen ausstehenden (aber quittierten) Diagnosealarm

🔄 "Erläuterung der Elemente" auf Seite 61

- Bei deaktiviertem Auto-Acknowledge des EtherCAT-Kopplers wird der entsprechende Zähler auf 1 gesetzt bis Sie diesen entsprechend quittieren. Hierzu schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.
- Bei aktiviertem Auto-Acknowledge finden Sie hier die Anzahl an Prozess- bzw. Diagnosealarmen, welche seit dem letzten Alarm-Reset aufgetreten sind. Zum Rücksetzen des entsprechenden Zählers schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Es gilt folgende Index-Zuordnung:

- Schreiben auf 0x06 von Index 0x5000:
 - Rücksetzen von Prozessalarm Zähler
- Schreiben auf 0x06 von Index 0x5002:
 - Rücksetzen von Diagnosealarm Zähler

4.8 Fehlerbearbeitung

4.8.1 Übersicht

In EtherCAT gibt es folgende Typen von Fehlermeldungen:

- Emergency-Fehlermeldung
- Standard-Fehlermeldung

4.8.2 Emergency-Fehlermeldung

Emergency-Fehlermeldungen treten auf, bei Fehlern während des Zustandswechsels bzw. bei Prozess- und Diagnosealarmen sofern diese über die Parametrierung aktiviert wurden. Emergency-Fehlermeldungen werden im Rahmen von geräteinternen Mechanismen ausgelöst und über den Mailbox-Service von EtherCAT dem Master gemeldet.

Telegrammaufbau

Byte

0	1	2	3	4	5	6	7
EE	C	ER			DATA		

EEC - Emergency Error Codes nach ETG-Spezifikation:

0xFFxx: herstellerspezifische Emergency-Nachricht (VIPA = 0xFF00)

0xA0xx: State Machine Transition Error, beispielsweise aufgrund eines Konfigurationsfehlers (Länge, Adresse, Einstellungen). Nähere Informationen hierzu finden Sie bei der ETG.

- ER Error-Register Zustand der State Machine:
 - 01: Init
 - 02: Pre-Op
 - 03: Bootstrap
 - 04: Safe-Op
 - 08: Op
- DATA Fehler-Daten mit näheren Informationen zum Fehler

Sofern es sich bei der Fehlermeldung um einen Prozess- bzw. Diagnosealarm handelt, finden Sie in DATA das *Manufacturer Specific Error Field* (MEF). Das Feld hat folgende Struktur:

Byte

0	1	2	3	4	5	6	7
E	EC	ER	SLOT	TYPE		DIAG	
					MEF		

SLOT - EtherCAT-Slot des Moduls mit dem Fehler

- TYPE Alarmtyp
 - 01: Prozessalarm
 - 02: Diagnosealarm
- DIAG Fehlercode, der bei dem entsprechenden Modul beschrieben ist.

Fehlerbearbeitung > Standard-Fehlermeldungen

4.8.3 Standard-Fehlermeldungen

Standard-Fehlermeldungen werden im Rahmen von geräteinternen Mechanismen ausgelöst und dem EtherCAT-Master gemeldet. Folgende Standard-Fehlermeldungen können auftreten:

AL Status Code

Zur näheren Fehlerbeschreibung wird vom EtherCAT-Master der AL Status Code (AL = application layer) ausgelesen. Dieser liegt im EtherCAT-Koppler in Register 0x0134 ab.

EtherCAT-spezifische Fehlermeldungen

Code	Description	Current State	Resulting State
0x0000	No error	Any	Current state
0x0001	Unspecified error	Any	Any + E
0x0002	No Memory	Any	Any + E
0x0011	Invalid requested state change	I > S, I > O, P > O, O > B, S > B, P > B	Current state + E
0x0012	Unknown requested state	Any	Current state + E
0x0013	Bootstrap not supported	I > B	I + E
0x0014	No valid firmware	I > P	I + E
0x0015	Invalid mailbox configuration	I > B	I + E
0x0016	Invalid mailbox configuration	I > P	I + E
0x0017	Invalid SyncManager configuration	P > S, S > O	Current state + E
0x0018	No valid inputs available	0, S > 0	S + E
0x0019	No valid outputs	0, S > 0	S + E
0x001A	Synchronization error	O, S > O	S + E
0x001B	SyncManager watchdog	O, S	S + E
0x001C	Invalid SyncManager Types	O, S, P > S	S + E
0x001D	Invalid Output Configuration	O, S, P > S	S + E
0x001E	Invalid Input Configuration	O, S, P > S	P + E
0x001F	Invalid Watchdog Configuration	O, S, P > S	P + E
0x0020	Coupler needs cold start	Any	Current state + E
0x0021	Coupler needs INIT	B, P, S, O	Current state + E
0x0022	Coupler needs PREOP	S, O	S + E, O + E
0x0023	Coupler needs SAFEOP	0	O + E
0x0024	Invalid Input Mapping	P > S	P + E
0x0025	Invalid Output Mapping	P > S	P + E
0x0026	Inconsistent Settings	P > S	P + E
0x0027	Free-run not supported	P > S	P + E
0x0028	Synchronization not supported	P > S	P + E

Fehlerbearbeitung > Standard-Fehlermeldungen

Code	Description	Current State	Resulting State
0x0029	Free-run needs 3 Buffer Mode	P > S	P + E
0x002A	Background Watchdog	S, O	P + E
0x002B	No Valid Inputs and Outputs	0, S > 0	S + E
0x002C	Fatal Sync Error	0	S + E
0x002D	No Sync Error	S > 0	S + E
0x0030	Invalid DC SYNC Configuration	O, S > O, P > S	P + E, S + E
0x0031	Invalid DC Latch Configuration	O, S > O, P > S	P + E, S + E
0x0032	PLL Error	0, S > 0	S + E
0x0033	DC Sync IO Error	0, S > 0	S + E
0x0034	DC Sync Timeout Error	0, S > 0	S + E
0x0035	DC Invalid Sync Cycle Time	P > S	P + E
0x0036	DC Sync0 Cycle Time	P > S	P + E
0x0037	DC Sync1 Cycle Time	P > S	P + E
0x0041	MBX_AOE	B, P, S, O	Current state + E
0x0042	MBX_EOE	B, P, S, O	Current state + E
0x0043	MBX_COE	B, P, S, O	Current state + E
0x0044	MBX_FOE	B, P, S, O	Current state + E
0x0045	MBX_SOE	B, P, S, O	Current state + E
0x004F	MBX_VOE	B, P, S, O	Current state + E
0x0050	EEPROM No Access	Any	Any + E
0x0051	EEPROM Error	Any	Any + E
0x0060	Coupler Restarted Locally	Any	L
< x8000	Reserved		

4.8.3.1 SyncManager watchdog

0x001B

Ist keine Kommunikation mit dem Master möglich wie z.B. durch Leitungsunterbrechung, erhalten Sie nach einer im Master parametrierbaren SyncManager-Watchdog-Zeit die Fehlermeldung 0x001B.

- SyncManager watchdog dient zur "Frame-Überwachung"
 - Kommen in einer bestimmte Zeit keine Frames mehr beim Slave an, kommt es zum watchdog und der Slave wechselt mit den AlStatusCode 0x001B nach SafeOp
- Per Default ist der SyncManager watchdog immer mit einer Zeit von 100ms aktiv
- Änderungen der Parameter z.B. über den EtherCAT Manager werden einmalig verändert und behalten solange Gültigkeit bis neue Werte kommen. Die Werte werden nicht remanent gespeichert
- Zeit vom SyncManager watchdog sollte immer größer sein, als die eingestellte Buszykluszeit am EtherCAT-Master. Da der SyncManager watchdog immer bei Empfang eines Prozessdaten-Frames getriggert wird
- Falls parametriert, werden Ersatzwerte bei den Modulen angezeigt

Fehlerbearbeitung > SDO Fehlercode

4.8.4 SDO Fehlercode

Wird eine SDO-Anforderung negativ bewertet, erhalten Sie einen entsprechenden SDO-Fehlercode. Die nachfolgende Tabelle zeigt die möglichen Fehlercodes:

Code	Description
0x05030000	Toggle bit not alternated
0x05040000	SDO protocol timed out
0x05040001	Client/server command specifier not valid or unknown
0x05040002	Invalid block size (block mode only)
0x05040003	Invalid sequence number (block mode only)
0x05040004	CRC error (block mode only)
0x05040005	Out of memory
0x06010000	Unsupported access to an object
0x06010001	Attempt to read a write only object
0x06010002	Attempt to write a read only object
0x06020000	Object does not exist in the object dictionary
0x06040041	Object cannot be mapped to the PDO
0x06040042	The number and length of the objects to be mapped would exceed PDO length
0x06040043	General parameter incompatibility reason
0x06040047	General internal incompatibility in the device
0x06060000	Access failed due to an hardware error
0x06070010	Data type does not match, length of service parameter does not match
0x06070012	Data type does not match, length of service parameter too high
0x06070013	Data type does not match, length of service parameter too low
0x06090011	Subindex does not exist
0x06090030	Value range of parameter exceeded (only for write access)
0x06090031	Value of parameter written too high
0x06090032	Value of parameter written too low
0x06090036	Maximum value is less than minimum value
0x0800000	General error
0x08000020	Data cannot be transferred or stored to the application
0x08000021	Data cannot be transferred or stored to the application because of local control
0x08000022	Data cannot be transferred or stored to the application because of the present device state
0x08000023	Object directory dynamic generation fails or no object directory is pre- sent (e.g. object directory is generated from file and generation fails because of an file error)

4.9 Firmwareupdate

Aktuelle Firmware auf www.vipa.com

Die aktuellsten Firmwarestände finden Sie auf www.vipa.com im Service-Bereich. Laden Sie die Px000314.pkg Datei.

	 VORSICHT! Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre Slave-Station unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversor- gung unterbrochen wird oder die Firmware-Datei fehlerhaft ist. Setzen Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung! Bitte beachten Sie auch, dass sich die zu überschreibende Firmware- Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.
Voraussetzung	Es besteht eine Ethernet-Verbindung bzw. Remote-Verbindung zwischen PC und der VIPA EtherCAT Slave-Station, bei der ein Firmwareupdate durchgeführt werden soll.
Vorgehensweise	 Stellen Sie eine Verbindung vom VIPA Slave 053-1EC01 zum EtherCAT Konfigura- tions-Tool her. Versetzen Sie den Slave in den Zustand Bootstrap.
	Beachten Sie hierzu mögliche Systemeigenschaften (Bei Verwen- dung des EtherCAT Managers muss sich der Master im Zustand Init befinden).
	 Wählen Sie die Datei Px000314.pkg für den Download über FoE aus. Geben Sie folgende FoE-Parameter ein: Dateiname: Px000314 Passwort (hex): 0x00000000 Timeout (ms): 100000 (wenn im Konfigurations-Tool vorhanden) Laden Sie das Package auf ihren Slave.
	 Nachdem das Package vollständig zum Slave übertragen wird, startet das Firmwareupdate (erkennbar an der abwechselnd blinkenden SF- und MT-LED). Während dieses Vorgangs darf der Slave keinesfalls von der Spannungsversorgung getrennt werden.
	6. Nachdem das Firmwareupdate vom Slave durchgeführt worden ist (SF- und MT- LED blinken nicht mehr) muss ein PowerCycle beim Slave durchgeführt werden. ⇒ Hiermit wird Ihre neue Firmwaredatei übernommen.

Anhang

Inhalt

A Änderungshistorie

A Änderungshistorie

Rev.	Änderungen
18-06	Das Handbuch wurde neu erstellt.
18-09	Kapitel "Einsatz"
	Beschreibung der "Synchronisationsarten" wurde überarbeitet.